Кабель СПЭ с секторной жилой — 4 преимущества. Устройство и конструкция оболочек.

Технология испытаний

Независимо от вида кабеля, испытания должны проводиться в обязательном порядке. В процессе проверяется соответствие всех характеристик и свойств на соответствие нормам. Раньше такие испытания подразумевали пропуск тока, сила которого была в несколько раз больше, чем номинальная (примерно в 6 раз).

Этот метод отбросили, потому что в процессе поверки у ЛЭП снижались характеристики из-за слишком высокого напряжения. В особенности у тех, которые уже давно использовались и имели плохую изоляцию.

В настоящее время для испытаний используют другую технологию. Её ещё называют «щадящей». При этом методе используют напряжение, которое выше номинального всего в 3 раза. Но при этом частота тока равняется 0,1 Гц. Объёмные заряды не образуются при таких испытаниях. Благодаря этому, нет негативного воздействия на изоляционные слои.

Как производится

При производстве силовых кабелей (СК) во всём мире применяют две технологии.

Технология сшивки бывает:

  • химической;
  • радиационной.

Химический способ разделяют на два вида производства, в зависимости от реагентов, которые используют при химических реакциях: это пероксиды и силаны.

Пероксиды, помещённые в среду нейтральных газов, в сочетании с определённым давлением и заданной температурой дают эффект сшивки. Она распространяется по всей толщине и не имеет включений воздуха. Пероксидный метод применяют для выпуска кабелей, рассчитанных на среднее и высокое напряжения.

Важно! Перед испытаниями продукция, изготовленная при помощи пероксидов, должна выдерживаться достаточное время, для того чтобы из изоляции после сшивки вышел метан. Выдержку проводят при температуре 800С, под давлением. Силаны являются активно-поверхностными веществами (органическими соединениями кремния), они устойчиво связывают органическую матрицу и неорганические наполнители

Это более дешёвый способ, при котором изоляцию на жилу накладывают в кремневой кислоте. Силановый метод используют для производства кабелей, эксплуатируемых при низком и среднем напряжениях

Силаны являются активно-поверхностными веществами (органическими соединениями кремния), они устойчиво связывают органическую матрицу и неорганические наполнители. Это более дешёвый способ, при котором изоляцию на жилу накладывают в кремневой кислоте. Силановый метод используют для производства кабелей, эксплуатируемых при низком и среднем напряжениях.

Радиационная технология, хоть и более эффективная, но из-за остаточной радиации применяется для изготовления кабелей для особых условий эксплуатации. Она выполняется путём облучения полиэтилена жёсткими гамма-лучами.


Способы сшивки

Интересно. Используемый в пероксидной технологии катализатор (перекись дикумила) имеет резкий особый запах. Он появляется при попытке механического разрушения изоляции. Насекомые и грызуны его не переносят, что является хорошей защитой от нападок грызущих животных.


Плюсы и минусы пероксидного метода

Кабели с изоляцией из СПЭ начали вводиться в эксплуатацию ещё с середины прошлого века. Японцы стали первопроходцами в этом. На сегодняшний день такая продукция, рассчитанная на среднее напряжение, занимает от 80 до 95% в США, Канаде, Дании и Германии в общем объеме. Япония, Франция, Швеция и Финляндия приблизили этот показатель к 100%. Российские производители продукции для энергетики также взяли курс на выпуск таких надёжных проводников.

Пластмассовая изоляция

Жилы покрываются пластмассовой изоляцией с помощью экструзии. Это более технологично, чем мотать бумагу, а потом пропитывать и сушить. Пластмассовая изоляция лучше бумажной маслопропитанной по всем параметрам:

Кабель контрольный с пластмассовой изоляцией (КВБбШв)

— большая пропускная способность кабеля за счет увеличения длительно допустимой температуры жилы,

— высокий ток термической устойчивости при коротком замыкании,

— меньше вес и диаметр,

— можно прокладывать кабель на морозе без предварительного подогрева,

— нет ограничений по разнице уровней на трассе (ничего никуда не стечет),

— монтаж проще из-за отсутствия жидких компонентов.

Есть четыре вида пластмассовой изоляции.

ПВХ пластикат

Смесь поливинилхлоридной смолы с пластификаторами и стабилизаторами. Пластификаторы с добавлением антиоксидантов делают изоляцию гибкой и замедляют деградацию удельного электрического сопротивления.

Силовой кабель ВВГ нг с изоляцией из ПВХ пластификата

ПВХ не лучший изолятор, зато устойчив к агрессивным средам. Не поддерживает горения, но горит. Начинает разлагаться при 140° C и выделяет токсичный газ хлороводород. Свойства ПВХ ухудшаются от света, и пигментные добавки не вполне спасают.

ПВХ пластикат — самый популярный вид пластмассовой изоляции кабелей.

Сшитый полиэтилен (СПЭ)

По свойствам примерно то же, что ПВХ пластикат. Изоляция из сшитого полиэтилена применяется только на одножильных и трехжильных кабелях. Преимущество СПЭ перед ПВХ: меньшая толщина диэлектрика при равном рабочем напряжении на линии.

ПвВ — кабель силовой с изоляцией из сшитого полиэтилена

При использовании СПЭ в конструкцию кабеля включаются два полупроводниковых слоя: по жиле и по изоляции. Это нужно для выравнивания напряженности электрического поля и электромагнитной совместимости кабеля с внешними электрическими цепями.

Сшитый полиэтилен СПЭ отличается от обычного термопластичного ПЭ сохранением механических и электрических свойств при приближении к температуре плавления. Причина: сшивка полимерных нитей на молекулярном уровне с помощью реактивов или радиации. Это как производство термоусадочной трубки, но без раздувки.

Концевые и соединительные кабельные муфты для кабелей с изоляцией ПВХ, сшитого полиэтилена и маслопропитанной бумаги. Перейти в каталог

Резина

Отличается повышенной гибкостью, влагозащитой и стоимостью, делается из каучуков. Силовые кабели в резиновой изоляции соединяют подвижные элементы с электросетью.

Кабель в резиновой изоляции имеет избыточный диаметр из-за округлой формы. Резина боится света и со временем теряет эластичность.

Кабеля КГ-Т силовой с изоляцией из резины

Помимо каучуковой, есть кремнийорганическая резина: кроме гибкости, она обладает повышенной термостойкостью.

Фторопласт

Максимально сильный диэлектрик, стойкий к высоким температурам и агрессивным средам. Фторопластовая изоляция очень дорогая, поэтому используется либо в жестких условиях эксплуатации, либо для высоковольтных греющих кабелей.

При равных габаритах кабели во фторопластовой изоляции передают большую мощность, чем кабели в СПЭ изоляции, не говоря уж о ПВХ.

Преимущества ВЛЗ

Все основные преимущества таких линий проистекают от защитной изоляции на проводе. Это в первую очередь:

защита от автоматических отключений и КЗ при падении веток на ЛЭП

защита от коротких замыканий при сближении проводов на недопустимое расстояние между собой

уменьшение габаритов опор и траверс

сокращение площади охранной просеки при прохождении ВЛ через лесные массивы

Однако наличие такой изоляции, также выставляет и другое требование — она должна быть неповрежденной и целой при всем сроке службы. Иначе надежность моментально снижается.

На фото ниже можно наглядно оценить разницу габаритов между одинаковыми типами опор ВЛ-35кв с голым проводом и ВЛЗ.

Однако не забывайте, габариты от проводов до земли для ЛЭП с изолированными проводами должны соблюдаться:

5,5м от земли в не населенной местности

6м от земли в населенной

Благодаря возможности перехода на опорную схему изоляции вместо подвесной, такие ВЛЗ-35кв можно строить в габаритах стоек от ВЛЗ-10кв.

То есть, здесь уже не нужны опоры СВ-164, можно запросто обойтись марками СВ 110 и СВ 105. В отдельных случаях на опорах СВ 110 можно даже построить двухцепную ВЛЗ-35.

Применение более низких опор, помимо экономии денежных затрат, дает ряд преимуществ не очевидных на первый взгляд:

уменьшается вероятность прямых попаданий молний в линию

упрощается монтаж — не требуется габаритная спец.техника, которая нужна при установке стоек СВ-164

То есть, непосредственно монтаж ВЛЗ-35кв и установку опор, можно выполнить всего одной техникой — бурильно крановой машиной БКМ. Не прибегая к услугам 16 или 25-ти тонного автокрана, а также без использования АГП-гидроподъемника.

Строительство обычной ЛЭП напряжением 35кв без этой техники немыслимо.

упрощается работа по закреплению опор в грунте

#gallery-1 {
margin: auto;
}
#gallery-1 .gallery-item {
float: left;
margin-top: 10px;
text-align: center;
width: 100%;
}
#gallery-1 img {
border: 2px solid #cfcfcf;
}
#gallery-1 .gallery-caption {
margin-left: 0;
}
/* see gallery_shortcode() in wp-includes/media.php */

сокращение межфазного расстояния приводит к существенно меньшей металлоемкости

Давайте более подробно рассмотрим технические особенности высоковольтных ВЛЗ и детально пройдемся по конструкции каждой опоры в отдельности.

Марка применяемой арматуры для ВЛЗ производства SICAME. Также будут приведены их аналоги от компании Ensto.

Из практики эксплуатации СПЭ-кабеля

Опыт внедрения кабеля с изоляцией из сшитого полиэтилена в других странах показал их большие возможности и преимущества. Однако не обошлось без ошибок при постановке этих кабелей в производство. Так, изначально при изготовлении кабелей многие производители применяли более дешевую технологию «силановой сшивки» полиэтиленовой изоляции. Ее отличительной особенностью является то, что наложение изоляции происходило на обычной экструзионной линии, при этом в полиэтиленовый пластикат добавлялись специальные смеси для обеспечения сшивки при нормальной температуре. Для сравнения сейчас в основной массе сшивка кабелей производится в среде нейтрального газа при температуре 300–400 °С и давлении 8–9 атмосфер. Для обеспечения необходимых эксплуатационных качеств сшивка должна происходить равномерно по толщине изоляции. При применении силановой сшивки это требование обеспечить чрезвычайно трудно при толщине изоляции, которая применяется для кабелей на напряжении 10 киловольт. В результате неравномерной сшивки эксплуатационные качества, срок службы, степень подверженности изоляции воздействию водотриингов, электрическая прочность оказывались значительно хуже расчетных, что приводило к большому числу электрических пробоев. Поэтому на сегодняшний день подавляющее большинство производителей используют технологию сшивки в среде нейтрального газа.

Этот опыт был учтен и при постановке в производство данного кабеля в России, также как и другие требования, предъявляемые к кабелям среднего напряжения российскими заказчиками. В результате конструкция кабеля, производимого в России отличается от европейской. Так как кабель применяется в основном в сетях 10 кВ, толщина изоляции была увеличена с 3,4 до 4,0 мм. При прокладке в земле применяется оболочка из полиэтилена высокой плотности, обеспечивающая необходимую защиту кабеля от механических повреждений, как при прокладке, так и в процессе эксплуатации. Если необходима герметизация экрана, используются два слоя водонабухающих лент под и поверх медного экрана, накладываемых с перекрытием. При прокладке кабеля в кабельных сооружениях применяется оболочка из ПВХ пониженной горючести.

Их всего сказанного выше можно сделать выводы, что кабели с изоляцией из сшитого полиэтилена являются предпочтительными и имеют большие перспективы при строительстве и реконструкции кабельных линий на напряжение 6, 10, 35 кВ. Благодаря уникальным характеристикам, высокой электрической прочности изоляции, невысокой повреждаемости, длительному сроку службы СПЭ-кабелей, их применение становится не только технически обоснованным, но и экономически выгодным.

1964

Закладки

Последние публикации

Николай Любимов вручил рязанским энергетикам награды за победы в конкурсе «Российская организация высокой социальной эффективности»

Вчера, в 17:02

26

Продолжается развитие системы учета энергоносителей на Чебоксарской ТЭЦ-2

Вчера, в 16:06

20

Оборудование «ЗЭТО» для питающего центра Петродворцового района Санкт-Петербурга

18 января в 16:18

21

Специалисты Курскэнерго оперативно восстановили электроснабжение потребителей, нарушенное непогодой

15 января в 12:44

63

Решение CrossTech Smart Assets включено в реестр российского ПО

14 января в 18:41

63

Энергетики филиала «Россети Центр» – «Курскэнерго» переведены в режим повышенной готовности в связи с погодными условиями

14 января в 14:55

76

Медицинские трансформаторы «Полигон» установлены в больнице в Нижнем Новгороде!

14 января в 11:55

67

Бархатная реновация

14 января в 11:39

73

Испытательный центр на базе «ЗЭТО» – гарантия надежности и качества

13 января в 18:51

73

Сотрудник Белгородэнерго удостоен государственной награды

12 января в 20:49

90

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

216689

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

46508

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

36742

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

21911

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

20602

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

19065

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

16912

Правильная утилизация батареек

14 ноября 2012 в 10:00

14283

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

12417

Порядок переключений в электроустановках 0,4 — 10 кВ распределительных сетей

31 января 2012 в 10:00

11822

Маркировка кабелей

В случае если токопроводящие жилы кабеля выполнены из меди, их обозначение в маркировке кабеля опускается. Алюминиевые жилы обозначаются буквой А. Бумажная изоляция силового кабеля не имеет буквенного обозначения, а указывается в паспорте на изделие. Буквой П обозначается полиэтиленовая изоляция, В – поливинилхлоридная, Р – резиновая.

Далее следует обозначение оболочки: алюминиевая – А, свинцовая – С, полиэтилен – П, поливинилхлорид – В, резина – Р. Последняя буква маркировки обозначает материал защитного покрова силового кабеля.

Согласно ГОСТ Р 53769-2010 Группа Е42 силовые кабели подразделяют по следующим признакам:

а) по материалу токопроводящих жил:

  • медные токопроводящие жилы (без обозначения);
  • алюминиевые токопроводящие жилы (А);

б) по виду материала изоляции токопроводящих жил:

  • изоляция из поливинилхлоридного пластиката, в том числе пониженной пожарной опасности (В);
  • изоляция из сшитого полиэтилена (Пв);
  • изоляция из полимерных композиций, не содержащих галогенов (П);

в) по наличию и типу брони:

  • небронированные (Г),
  • бронированные:
  1. броня из стальных оцинкованных лент (Б),
  2. броня из лент из алюминия или алюминиевого сплава (Ба),
  3. броня из круглых стальных оцинкованных проволок (К),
  4. броня из проволок из алюминия или алюминиевого сплава (Ка);

г) по виду материала наружной оболочки или защитного шланга:

из поливинилхлоридного пластиката, в том числе пониженной горючести или пониженной пожарной опасности:

  1. наружная оболочка (В),
  2. защитный шланг (Шв);

из полиэтилена: защитный шланг (Шп);

из полимерных композиций, не содержащих галогенов:

д) по наличию металлического экрана:

  • без экрана (без обозначения);
  • с экраном (Э);

е) по исполнению в части показателей пожарной безопасности:

  • не распространяющие горение при одиночной прокладке (без обозначения);
  • не распространяющие горение при групповой прокладке (нг):
  1. по категории A F/R — нг(А F/R),
  2. по категории А — нг(А),
  3. по категории В — нг(В);
  • не распространяющие горение при групповой прокладке, с пониженным дымо- и газовыделением (нг-LS);
  • не распространяющие горение при групповой прокладке и не выделяющие коррозионно-активных газообразных продуктов при горении и тлении (нг-HF);
  • огнестойкие, не распространяющие горение при групповой прокладке, с пониженным дымо- и газовыделением (нг-FRLS);
  • огнестойкие, не распространяющие горение при групповой прокладке и не выделяющие коррозионно-активных газообразных продуктов при горении и тлении (нг-FRHF);

ж) по форме поперечного сечения кабеля:

и) по конструктивному исполнению токопроводящих жил:

  • однопроволочные (о);
  • многопроволочные (м);
  • круглые (к);
  • секторные или сегментные (с).

Кабель СПЭ с ПВХ оболочкой


Марки кабеля ПвВ и АПвВ – это изделия с внешней оболочкой из поливинилхлоридного пластиката. Она применяется для прокладки в пожароопасных помещениях и там, где выставляются дополнительные условия по пожарной безопасности.

У них в аббревиатуре появляется дополнительная маркировка:

Нг

не поддерживающий горения

Некоторые переводят как ”не горючий”, но это не совсем верно. Он горит при воздействии прямого огня. Однако стоит огонь убрать, и поддерживать горение далее он не будет.

Такие кабеля в основном прокладываются внутри помещений. Для прокладки их в земле необходимо, чтобы влажность грунта не превышала 14%.

индекс Ls

с оболочкой пониженного дымовыделения

Например АПвВнг(В) – Ls 10.

Буква ”В” в скобках – кабель для эксплуатации в пожароопасных помещениях. Буква ”А” – во взрывоопасных. Иногда для огнезащитного барьера используется стеклолента.

Кабель АПвВнг(А) – Ls FRHF 10.

FR – огнестойкий

HF – без галогенный

Самый опасный галоген в кабелях это хлор. При горении вышеуказанная марка кабеля выделяет минимум дыма, горит только внутри пламени и не распространяет при пожаре вредных веществ.

Конструкция

В середине расположена токоведущая жила из алюминия или меди.

Поверх нее нанесен токопроводящий слой, который состоит из того же самого сшитого полиэтилена, но в него включены специальные добавки, основная часть из которых — это сажа.

Сажа добавлена для того, чтобы получить полупроводящий слой, выполняющий функцию выравнивания электромагнитного поля.

Без него, на отдельных жилах напряженность может быть увеличена до 30% по сравнению с остальными. А это способно вызвать частичные разряды между изоляцией и жилой.

Далее идет основная изоляция. Ее толщина зависит от напряжения.

Поверх основной изоляции также накладывается полупроводящий слой. Сажи в нем до 40%.

После идут различные защитные материалы:

подложка

Она может быть выполнена из кабельной бумаги или из нетканого материала с полупроводящими свойствами

экран из медных проволок

в противоположную сторону наложения проволок, на экран накручивается лента медной фольги

Ее функция обеспечить контакт между проволоками, для того чтобы распределить равномерно ток протекающий по ним.

еще один защитный слой из кабельной бумаги или ленты нетканого материала

Он удерживает экран в плотно намотанном состоянии.

поверх всего этого накладывается оболочка из защитного полиэтилена

Здесь уже применяется обычный полиэтилен со свойствами светостабилизации и хорошей механической прочности.

В другой конструкции кабеля АПвПуг-10 две новые буквы обозначают:

У
усиленная оболочка

Она по свойствам такая же как и обычная, но большей толщины.

Кабеля с усиленной оболочкой прокладываются по сложным трассам, в трубах и там, где имеется большее количество пересечений с другими кабелями, водопроводами или иными инженерными сооружениями.

Г
наличие под экраном герметизирующего слоя

Этот слой препятствует распространению воды вдоль кабеля при повреждении внешней оболочки. По своим свойствам эта водоблокирующая лента напоминает детский памперс.

То есть, при попадании воды во внутрь кабеля, эта лента разбухает и препятствует дальнейшему распространению влаги.

В отличие от изделий с бумажной изоляцией, здесь не возможна ситуация, когда кабель буквально всасывает в себя влагу на протяженности нескольких десятков метров.

Если в названии присутствует индекс “2г”, то это означает двойную герметизацию. Одна водоблокирующая лента обеспечивает продольную герметизацию, а внешний слой, выполненный из алюмополимерной ленты – поперечную.

Причем этот защитный слой, может полностью защитить кабель от незначительных трещин на внешней изоляции.

Трехфазные кабеля АПвПуг-10 фактически представляют из себя собранные воедино однофазные модели в общей защитной оболочке.

При этом многим электрическим характеристикам такие кабеля соответствуют обыкновенным видам с бумажно-пропитанной изоляцией.

Главное их отличие и достоинство заключается в том, что даже при повреждении внешних покровов и попадании воды на основную изоляцию (экран, подложки), кабель спокойно будет продолжать работать.

В отличии от обычных КЛ, где внешний дефект в итоге очень быстро сказывается на самих жилах.

Изоляция жил из сшитого полиэтилена не гигроскопична и поэтому обеспечит нормальную работу электроустановки. Фактически зафиксированное время работы кабеля СПЭ, с поврежденной и разрушенной внешней защитной оболочкой, на реальном объекте — порядка 5 лет.

Разница и сравненение кабеля с СПЭ изоляцией 6-35кв и кабеля с бумажной изоляцией: 

Основные технические характеристики для высоковольтных кабелей из сшитого полиэтилена (сечение, толщина изоляции, вес, номинальный ток): 

Дополнительные характеристики (токи КЗ, сопротивление, емкость, вместимость барабанов):

Особенности включения по типу заземления

Эксплуатация кабельных изделий из СПЭ возможна в следующих условиях:

  • Включение их в сети по схеме с изолированной нейтралью;
  • То же, но с заземлённой нейтралью (ЗН);
  • Эксплуатация в условиях замыкания на землю одной из фаз (ОЗЗ).

Рассмотрим, при каких условиях допускается каждое их перечисленных выше включений:

  • Во-первых, при угрозе длительного воздействия на изоляцию предельных перенапряжений кабель может эксплуатироваться лишь при наличии системы автоматического отключения в режиме ОЗЗ;
  • Во-вторых, в отсутствие защитного отключения нельзя исключить возможность пробоя изоляции на отдельных участках с необходимостью их дальнейшего ремонта или замены;
  • В-третьих, наиболее благоприятные условия для эксплуатации кабельных изделий с СПЭ – включение по схеме с ЗН.

Важно! Последнее условие предполагает наличие систем релейной защиты, срабатывающих на отключение при КЗ на землю. Используемый в таких схемах резистор должен иметь номинальное значение, которое выбирается обычно из следующих соображений. Протекающий через него ток (в точке КЗ на землю) не должен превышать величины фазной утечки наиболее мощного из всех кабельных присоединений

Протекающий через него ток (в точке КЗ на землю) не должен превышать величины фазной утечки наиболее мощного из всех кабельных присоединений

Используемый в таких схемах резистор должен иметь номинальное значение, которое выбирается обычно из следующих соображений. Протекающий через него ток (в точке КЗ на землю) не должен превышать величины фазной утечки наиболее мощного из всех кабельных присоединений.

Применение кабельной продукции из СПЭ в различных заземлённых передающих линиях возможно в тех случаях, если при ОЗЗ обеспечивается:

  • Величина перенапряжений не превышает допустимого нормативами уровня;
  • Возможные перенапряжения действуют в течение ограниченного времени или при условии, что такое воздействие осуществляется в переходном и установившемся режиме.

В заключительной части обзора отметим, что выбор конкретного вида кабельной продукции, соответствующей предполагаемым эксплуатационным режимам, осуществляется ещё на этапе проектирования

При этом особое внимание должно быть уделено соблюдению требований и методик, оговариваемых международным стандартом МЭК

Они затрагивают такие важные технические характеристики кабельных изделий, какими являются их физико-механические параметры, а также возможность работы при низких температурах. В этих требованиях особо оговариваются минимально возможные радиусы изгиба и возможность защиты от высокочастотных э/м воздействий.

Технические характеристики

В случае подключения к каким-либо цепям, важно убедиться, что характеристики кабеля ТППэп соответствуют параметрам работы устройства или его сетей. К основным техническим характеристикам относятся:. К основным техническим характеристикам относятся:

К основным техническим характеристикам относятся:

  • Номинальное рабочее напряжение – составляет для линий переменного тока 225 и 145 В, а для участков постоянного тока – 315 или 200В.
  • Допустимый предел рабочих температур – колеблется в пределах от – 50 до +60°С для марки ТППэп.
  • Сопротивление электрическому току – определяет способность кабеля проводить электроэнергию, для ТППэп оно варьируется в пределах от 216 до 27,4 Ом/км при протекании постоянного тока.
  • Емкость – особенно важна в определении полного сопротивления в цепях с переменным напряжением и составляет 45 нФ/км.
  • Сопротивление изоляции – измеряется мегаомметром и составляет не менее 6500 МОм.
  • Минимальный радиус изгиба – должен составлять не менее 10 наружных диаметров ТППэп. Определяется в зависимости от количества пар в конкретной модели, данное значение можно взять из таблицы.

Таблица: Расчетный наружный диаметр кабеля, мм

Количество  пар проводов в кабеле

Диаметр жилы

0,32 мм0,40 мм0,50 мм0,64 мм0,70 мм0,90 мм
56,57,17,99,09,711,4
107,78,49,611,512,515,5
209,510,612,315,416,821,2
3011,212,415,117,620,224,4
5014,215,618,522,824,931,3
10017,621,326,130,733,742,3
20024,428,634,041,445,757,4
30029,533,441,049,9
40032,938,546,156,2
50035,942,151,662,1
60039,745,355,667,2
70042,349,359,7
80044,652,163,2
90046,854,766,4
100049,957,169,5
120053,862,175,3
140057,4
160061,670,2
180064,773,9
200067,7
2400

Пример выбора кабелей с изоляцией из сшитого полиэтилена

Исходные данные:

Требуется обеспечить питание двух трансформаторов ТМ-4000/10 от подстанции. Линия состоит из двух групп одножильных кабелей АПвЭгП, группы могут быть расположены треугольником или в плоскости. Линия прокладывается в грунте (в траншее) и по территории предприятия по эстакаде. Расстояние между группами кабелей в траншее 200 мм, а на эстакаде равно диаметру группы кабелей, связанных в треугольник.

Линия имеет участок перехода в трубах длиной 20 м, проложенных в земле, каждый кабель в отдельной трубе. Расчетная температура воздуха 30 °С, грунта 20 °С. Глубина прокладки в земле 1 м, удельное тепловое сопротивление грунта 1 °К⋅м/Вт. Релейная защита отключает ток короткого замыкания через 0,2 с, величина тока короткого замыкания 24 кА.

Сечение токопроводящей жилы и марка кабеля выбраны по РД К28-003:2007 «Руководство по выбору, прокладке, монтажу, испытаниям и эксплуатации кабелей с изоляцией из сшитого полиэтилена на напряжение от 6 до 35 кВ».

Решение:

1. Определяем расчетный ток в нормальном режиме:

2. Расчетный ток кабельной линии в режиме допустимой перегрузки трансформатора на 40 % (послеаварийный режим) составит:

3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:

где: Jэк =1,4 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=4500 ч.

Сечение округляем до ближайшего стандартного 185 мм2.

Необходимо выбрать номинальное сечение жилы кабеля, допустимый ток для которого не менее 324 А.

Сечение 185 мм2 не проходить для кабелей, проложенных в земле для способа прокладки треугольником. В таблице 2.5 указан допустимый ток в земле 367 А, которому соответствует номинальное сечение алюминиевой жилы 240 мм2, а для кабеля сечением 185 указан 317 А < 323,3 А. Поэтому принимаем кабель сечением алюминиевой жилы 240 мм2.

4.1 Допустимый ток для заданных условий прокладки кабеля в траншее рассчитывается при помощи поправочных коэффициентов:

  • к2=0,97 (табл.2.10);
  • к3=1,18 (табл.2.12);
  • к4=0,83 (табл.2.17).

т.е. сечения жилы 240 мм2 при выбранных условиях прокладки достаточно.

4.2 Для прокладки в плоскости допустимый ток для номинального сечения жилы 240 мм2 в земле 373 А. Допустимый ток для заданных условий прокладки кабеля в траншее определяется с учетом коэффициентов:

  • к2=0,97 (табл.2.10);
  • к3=1,18 (табл.2.12);
  • к4=0,83 (табл.2.17)

4.3 Для участка кабеля, проложенного в отдельных трубах, допустимый ток составляет 351 А; поправочные коэффициенты:

  • к2=0,97 (табл.2.11);
  • к3=1,14 (табл.2.13);
  • к4=0,85(табл.2.19)

4.4 Для кабеля, проложенного на воздухе (на эстакаде), допустимый ток составляет 502 А, поправочный коэффициент к5=1,00 (табл.2.21)

Таким образом, выбранное номинальное сечение 240 мм2 обеспечивает пропускную способность линии на всей длине трассы при выбранных видах прокладки.

5. Допустимый односекундный ток короткого замыкания для выбранного сечения жилы кабеля 22,7 кА (табл.2.25); соответствующий допустимый ток короткого замыкания продолжительностью 0,2 с составит:

т.е. больше требуемого тока 24 кА.

6. При выборе сечения медного экрана должно выполняться условие:

Iк.з.экрана > I2ф(к.з.)

где:

  • Iк.з.экрана – допустимый ток медного экрана;
  • I2ф(к.з.) – двухфазный ток КЗ. Для того чтобы получить двухфазный ток КЗ из трехфазного нужно умножить на √3/2.

6.1 Определяем двухфазный ток КЗ:

I2ф(к.з.) = √3/2* I3ф(к.з.) = 0,87*24 = 20,88 кА

Из табл.2.27 выбираем сечение медного экрана 50 мм2, при длительности короткого замыкания 0,2 с, допустимый ток короткого замыкания по экрану составит:

т.е. больше требуемого тока 20,88 кА, в принципе можно принять сечение медного экрана 50 мм2, но так как допустимое значение медного экрана близко к расчетному двухфазному току, чтобы перестраховаться принимаем сечение 70 мм2.

Таким образом, при указанных исходных данных выбран кабель АПвЭгП-10 1х240/70.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий