Акт измерения сопротивления изоляции электропроводок

Нормы испытаний

В ходе испытаний высоковольтный провод получает нагрузку повышенным напряжением, но поднимается оно плавно от нулевой отметки до установленной величины. Продолжительность воздействия составляет 5 минут для периодических и 10 минут во время приемо-сдаточных испытаний для кабелей с пластмассовой и бумажной изоляцией. После каких-либо ремонтных работ или при изменениях в схеме время испытания кабеля составляет 10 – 15 минут. Кабель с резиновой изоляцией испытывается повышенным напряжением 5 минут во всех случаях.

Все данные устанавливаются государственными документами – ПУЭ и ПТЭЭП. В зависимости от параметров сети и технических характеристик кабеля существуют такие пределы подачи повышенного напряжения (см. таблицу ниже):

Тип кабеляНоминальное напряжение кабеля, кВИспытательное напряжение, кВПродолжительность испытания, мин
С бумажной изоляцией3—106 Uв10
20—355 Uв10
11030015
22045015
С резиновой изоляцией3615
6125

Посмотрите, в таблице вы можете увидеть значение выпрямленного напряжения, подаваемого непосредственно на сам кабель. Оно отличается от номинального напряжения, выдаваемого испытательным трансформатором и по величине и по роду. UВ обозначает номинальное напряжение кабеля, а цифры указывают во сколько раз испытательное напряжение должно превышать номинальное.

Ток утечки не является параметром для контроля или выбраковки. Но в случае его скачков, колебаний во время испытания повышенным напряжением, можно смело утверждать о наличии дефектов. В таком случае подачу напряжения на кабель необходимо осуществлять до пробоя, но не больше 15 минут. Вместе с током рассчитывают и коэффициент асимметрии, их нормы вы можете увидеть в таблице:

Кабели напряжением, кВИспытательное напряжение, кВДопустимые значения токов утечки, мАДопустимые значения коэффициента асимметрии,
636

45

8

60

8

175

2,5

Отклонение от значений, приведенных в таблице, может свидетельствовать о серьезных изменениях в изоляции кабельной линии. В случае, когда не было пробоя, отсутствовали электрические разряды, хлопки, внезапное нарастание или колебания постоянного тока во время испытания, кабель считается годным. В частных случаях, лицо ответственное за электрохозяйство может самостоятельно устанавливать испытательные сроки и параметры в разрез заводских норм.

Что подразумевается под «изоляцией»

Любой электрокабель должен быть специальным образом изолирован. Изоляционное покрытие позволяет разделить между собой провода, по которым идет ток, а также отсоединить эти провода от земли.

Для того, чтобы оценить, насколько хорошо «работает» такая изоляция, осуществляются замеры ее сопротивления – их результаты являются основным значением в работе специалистов по электрике.

Первое измерение проводится еще на заводе-изготовителе кабеля, затем – при монтаже и впоследствии в течение всего периода использования кабельного изделия. Связано это с тем, что на изоляцию оказывают влияние такие факторы, как погода, срок ее применения, количество, частота повреждений на линии и проч.

Составные элементы протокола

Документ заполняется с одной стороны листа. В верхней его части слева прописывается полное наименование исполнителя замера с адресными данными. Также необходима информация того же формата о заказчике. Ниже в бланке расположено название договора. Рядом с ним ставится номер документа, заносимый в регистры. Здесь же ставится дата постановки подписи.

Для удобства предоставления информации конкретные данные о кабелях и их проводимости, согласно проведенным измерениям, представляются в виде двух таблиц. Первая имеет следующие графы:

  • Порядковый номер.
  • Название присоединения.
  • Марка кабеля, количество жил, их сечение. По возможности нужно указывать, имеется ли на жилах кабеля изоляция и из какого материала состоит проводник (по умолчанию подразумевается медь, но есть и варианты проводников с внешней медной оболочкой, а внутренним содержанием из алюминия). Если исследуется на сопротивление провод, то тоже нужно указать, сколько у него жил, изолирован ли он.
  • Сопротивление изоляции в жиле L–N.
  • Сопротивление изоляции в L–PE.
  • Сопротивление изоляции в N–PE.
  • Заключение о соответствии. Здесь имеется в виду удовлетворение требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий.


Вторая описывает использующееся при замерах оборудование и состоит из столбцов с такими сведениями, как:

  • порядковый номер;
  • название прибора;
  • тип;
  • заводской номер;
  • диапазон доступных измерений;
  • основная погрешность;
  • номер свидетельства;
  • дата последней проверки;
  • дата очередной проверки прибора.

В обеих таблицах может быть заполнена как одна, так и несколько строк. Замеры совсем без оборудования проводиться не могут, поэтому заполнение второй таблицы при существовании документа обязательно. В самом конце таблиц обязательно указывается нормативный документ (ГОСТ, ПУЭ, СаНПиН, ПТЭЭП, инструкций РД и СО. и пр.), на соответствие которому была проверена изоляция конкретной однофазной цепи.


Исходя из данных таблиц и информации, встречающейся в документах, должен быть сделан вывод: соответствует изоляция проводника заявленным требованиям или нет. Он формулируется в письменном виде, в специальной графе «Заключение». В бланке для этого предусмотрена всего одна строка, так как достаточно будет одного слова или предложения «соответствует» либо «не соответствует».

Подписка на рассылку

Измерение сопротивления изоляции контрольных кабелей входит в комплекс мероприятий по оценке состояния самого кабеля и/или определению безопасности работы определенного участка электрической цепи. Полученные в результате замеров сведения помогают определить примерный остаточный срок службы кабеля — об этом можно судить по качеству (текущему состоянию) его оболочки и/или изоляции токопроводящих жил. Сопротивление контрольного кабеля производится при определенных условиях со строгим соблюдением правил безопасности. Для выполнения операции измерения используются мегаомметры аналогового или цифрового типа.

Когда и при каких условиях производятся замеры

Согласно современным требованиям, приводимым в ПУЭ и ПТЭЭП документации, испытания изоляции на сопротивление контрольного кабеля должны производиться не реже, чем 1 раз в 3 года (1 раз в год в случае с кабелями, эксплуатируемыми в особо опасных помещениях либо задействованными в работе подвижных установок — лифты, краны и т. д.). Частота проверок также зависит от условий эксплуатации кабельной продукции — в этом случае испытания должны проводиться согласно правилам эксплуатации, устанавливаемым еще на стадии проектирования цепей управления.

Сопротивление изоляции контрольных кабелей производятся при соблюдении следующих условий:

• Температура окружающей среды — от –30 до +50°С. Влажность воздуха до 90 %. Допустимая температура и влажность зависят от возможности конкретной модели мегаомметра работать при тех или иных условиях. • Участки кабеля, условия измерения и величина напряжения, прикладываемая к токопроводящим жилам, зависят от конкретной марки изделия. • При отсутствии документации к конкретной марке контрольного кабеля, согласно ПУЭ (таблица 1.8.39), к жилам прикладывается напряжение величиной от 500 до 1000 В. • Контрольный кабель может испытываться со всеми подключенными к нему аппаратами (пускатели, реле, приборы и т. д.).

Меры безопасности:

• Замеры сопротивления изоляции контрольных кабелей напряжением до 1 кВ допустимо производить специалистами с 3-й или выше группой по электробезопасности. • Кабель отключается от питающей сети, после чего с него снимается остаточное напряжение путем заземления токопроводящих частей. • Перед началом процедур необходимо убедиться в отсутствии людей у той части аппарата, к которой присоединен мегаомметр. • Напряжение прикладывается к токоведущим частям кабеля при помощи измерительных щупов с изолированными держателями. • Запрещается прикасаться к токопроводящим жилам, к которым подключен работающий мегаомметр. • По завершению измерений с измеряемой части кабеля снимается остаточный заряд путем его кратковременного заземления или включения соответствующей функции мегаомметра (присутствует в некоторых моделях устройств).

Методика проведения измерений

Измерение сопротивления изоляции контрольных кабелей производятся согласно требованиям, предъявляемым к проведению измерения сопротивления низковольтных кабелей (до 1 кВ) за одним исключением: токопроводящие жилы можно не отсоединять от электрооборудования. Для выполнения процедуры требуется использование цифрового/аналогового мегаомметра, рассчитанного на работу при напряжении от 500 до 2500 В (зависит от спецификации конкретной марки кабеля). Алгоритм выполнения измерений выглядит следующим образом:

1. Проверка отсутствия напряжения в испытуемых токопроводящих жилах. Снятие остаточного напряжения путем заземления испытуемых жил. 2. С испытуемой стороны кабеля концы токопроводящих жил разделываются (оголяются) и разводятся друг от друга на некоторое расстояние (5–10 см). 3. Каждая жила кабеля испытывается отдельно следующим образом: o Испытуемая жила подключается к одному из входов («+») мегаомметра, все остальные жилы объединяются между собой и подключаются к «земле», куда также подключается второй вход («–») прибора (см. рисунок ниже). o На кабель подается напряжение. Если мегаомметр снабжен электромеханическим генератором, напряжение генерируется путем вращения рукоятки на оборотах 120–150 об/мин. Если генератор не предусмотрен, используется внешний источник электропитания (питающая сеть или аккумулятор). o Испытания проводятся в течение 1 минуты. По истечении этого времени результат заносится в журнал. o Далее действия повторяются по отношению к каждой токопроводящей жиле (испытуемая жила подключается к выводу мегаомметра, все другие — объединяются в единую цепь со вторым выводом прибора и подключаются к «земле»).

Кто производит замер

Немаловажную роль играет и то, кто проводил измерения сопротивления. Протокол не будет иметь юридической силы, если составляющие и заполняющие его сотрудники учреждения не будут иметь соответствующей для этого занятия квалификации.

Важно! Специально обученный инженер-электрик ставит производит измерения, сверяется с нормативами и в конце ставит свою подпись в качестве гарантии того, что информация верна. Также после заключения должны поставить свои подписи инженер по испытаниям и начальник лаборатории. Потом все заверяется печатью учреждения, которое проводило измерения

Стоит отметить, что по желанию заказчика многие электролаборатории могут составить дефектные ведомости (если в результате проверки выявились неисправности у какого-либо оборудования однофазной цепи) и предоставить услугу по устранению выявленных недочетов и неполадок

Потом все заверяется печатью учреждения, которое проводило измерения. Стоит отметить, что по желанию заказчика многие электролаборатории могут составить дефектные ведомости (если в результате проверки выявились неисправности у какого-либо оборудования однофазной цепи) и предоставить услугу по устранению выявленных недочетов и неполадок

Также после заключения должны поставить свои подписи инженер по испытаниям и начальник лаборатории. Потом все заверяется печатью учреждения, которое проводило измерения. Стоит отметить, что по желанию заказчика многие электролаборатории могут составить дефектные ведомости (если в результате проверки выявились неисправности у какого-либо оборудования однофазной цепи) и предоставить услугу по устранению выявленных недочетов и неполадок.

Основные показатели в процессе измерения

Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.

Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека

Напоследок

Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.

Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:

Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Курилка (просто трёп) » Проверка сопротивления изоляции

Возник вопрос. Каким образом проводится этот пункт регламента. Какие корки и оборудование необходимо, какие поверочные документы на оборудование. И самое главное — как проводить правильно эту проверку. Признаюсь — доселе везло и от подобного чуда я удачно увиливал. Но с наступлением времен, когда начинается экономия бюджета, контролирующие финансы подразделения бюджетников злобарят ацке, могут запросить акты и результаты проверок, программу проверок. Надо бы быть готовым, как отмазаться и какие параметры использовать.

4 года 5 месяцев назад

– Каргапольцев Артур Николаевич 4 года 5 месяцев назад

Что случилось с новой техникой?

Не всегда стиральная машина шумит по причине неисправности или сбоя. Если стиралка гудит с первого запуска, но при этом нет явных стуков и скрипов, а сам шум является монотонным и равномерным, то поводов для беспокойства быть не должно. Возможно, данная модель и должна быть «громкой» – по эксплуатационным характеристикам. Убедиться в правоте несложно: изучаем прилагаемую инструкцию и уточняем приведенные децибелы.

В техническом паспорте производитель обязательно указывает максимальный уровень шума, который выдает стиралка при самом скоростном отжиме. Приводится параметр в дБ, правда, на слух соотнести исходящий от автомата гул с цифрой не получится. Необходимо воспользоваться специальным прибором – шумомером.

Приобрести шумомер можно как в специализированных магазинах, так и на интернет-площадках. Стоимость варьируется в зависимости от функционала и страны-изготовителя. Китайские измерители можно найти и по 150-300 руб.

Попробовать прикинуть громкость стиральной машины можно и без шумомера. К примеру, сравнить воспроизводимый гул с известными звуковыми «ситуациями». Обычный человеческий разговор оценивается специалистами в 50 дБ, мотор грузовика работает примерно на 80 дБ, автомобильная сирена в диаметре 5 м достигает 100 дБ, а взлетающий самолет – 150 дБ. Значения ориентировочные, но иногда помогают «услышать» автомат.

Главное, оценить характер шумов. Автомат должен работать в одном ритме, без резких стуков и лязга. Иначе можно заподозрить поломку механизма.

Нормы составления протокола сопротивления изоляции

Заполняя бланк, специалисты руководствуются целым рядом документов и ГОСТов. Они утверждают технику безопасности, регулирование категории исследуемого оборудования и обозначает этапы решения задач.

Бланк диагностики изоляции может выглядеть по-разному – все зависит от фазности цепи. К примеру, однофазная цепь требует три замера, а трехфазная (5-ти проводная) – целых десять. Кроме того, есть свои различия в требованиях к проводникам с разнообразным диаметром жил.

Что касается периодичности процедуры, то замеры классифицируют на:

  • приемо-сдаточные – проводятся сразу же после монтажных мероприятий;
  • периодические – проводятся раз в полгода, год (зависит от договоренности и согласно требованиям)

Основные показатели в процессе измерения

Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.

Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека

Система заземления здания. Стандарты и требования к заземлению

Сколько бы человечество не сделало прорывов в науке и изобретений, можно уверенно сказать, что всё самое гениальное дала нам Матушка-Природа. И причина тому одна: всё, что есть на земле, одинаково гениально и просто! Например, вода, – это соединение двух газов. Удивительно, гениально и, вместе с тем, очень просто. Подобными уникальными свойствами обладает всё, что даёт нам планета – вода, воздух,

Но сегодня мы поговорим о земле, а если быть точнее – о почве земли. Земля тоже обладает множеством свойств, которые человечество использует повсеместно. Нас же интересует такое свойство земной поверхности, как способность поглощать и «растворять» электрические заряды. Это свойство земли было открыто в процессе изучения электричества. Дело в том, что после открытия электрической энергии, люди понимали: в электричестве – будущее. Но для того, чтобы эффективно её использовать, необходимо было научиться её контролировать. Ведь электричество – штука опасная. И для того, чтобы избежать случайных поражений электрическим током, необходимо было его «ненужные» заряды каким-то образом «утилизировать».

Для того, чтобы лучше понять, как же проводятся испытания и замеры системы заземления здания, необходимо чётко понимать – что из себя представляет эта система?

Чисто технически, система заземления – это, всего лишь, система проводников (кабелей, металлических полос, уголков и т.п.), которыми связываются электроприборы здания с заземлителями, расположенными непосредственно в грунте. Она не подразумевает в своём составе никаких устройств автоматики, так как земля «делает» всё необходимое самостоятельно. Главное требование, которое предъявляется к системе заземляющих проводников во время приёмки электромонтажных работ – эти проводники должны быть видимы. То есть, не смотря на то, что, например, потолочный светильник, имеющий металлический корпус, питается по трёхжильному кабелю, где одна жила служит в качестве проводника для заземления, очень часто комиссия требует выведения отдельного, видимого проводника. Неудивительно, что это требование очень часто вызывает большое количество споров. Также, для всех проводников системы заземления – как для кабелей, так и для шин – регламентирована двухцветная, жёлто-зелёная окраска, что помогает системе заземления выделяться из общей массы однотонных кабелей.

Заземление, в первую очередь, делят на «естественное» и «искусственное».

Искусственное заземление – это как раз та система специальных проводников и заземляющих устройств, которая строится для конкретных целей – защита от поражения электрическим током и нормальное функционирование приборов.

Правила оформления протокола испытаний

Шаблон протокола, как правило, печатается на компьютере, основные сведения в него можно вносить как от руки, так и в печатном виде. Оформлять документ допустимо на обычном листе А4 формата или на фирменном бланке предприятия – второй вариант освобождает от необходимости вбивать реквизиты фирмы вручную.

Протокол обязательно должен быть заверен оригиналами подписей ответственных лиц.

При этом печать на нем ставить не обязательно, поскольку с 2016 года наличие печатей и штампов у юридических лиц не является требованием со стороны закона (т.е. штамповать документы можно только при добровольном волеизъявлении руководства фирмы).

Протокол пишется в стольких экземплярах, сколько необходимо для всех заинтересованных сторон. После утраты актуальности документ передается на хранение в архив предприятия, где содержится на протяжении установленного для таких бумаг периода.

Принцип работы

Тестирование состояния изоляции, было разработано в начале 20-го века и является старейшим и наиболее широко используемым измерительным процессом в современной электротехнике и проводится согласно государственным стандартами электробезопасности. Это вызвано тем, что даже без видимых повреждений в изоляции кабельных сетей, ее сопротивление может стать недостаточным, чтобы защитить человека от воздействия токов высокого напряжения.

Принцип работы

Факторы, способствующие ухудшению изоляции:

  1. Температурный. Перепады температур с холодной на горячую, и наоборот с течением времени вызывают растрескивание изоляции.
  2. Электрический. Все кабели изготавливаются для определенных условий эксплуатации. Нарушений заводских условий использования может подвергнуть кабель к перенапряжению с потерей изоляции своих защитных свойств.
  3. Физический. Повреждение изоляции из-за нарушений эксплуатации или других неправомерных действий обслуживающего персонала.
  4. Химический. Моторное масло, грязь и пыль могут оказывать неблагоприятное химическое воздействие на изоляцию проводов.
  5. Окружающая среда. Этот фактор всегда воздействует на защитное покрытие кабелей: ультрафиолетовые лучи, влажность, снег и природные факторы, что должно учитываться разработчиками кабельной продукции.

Измерение сопротивления

Принцип работы меггера:

  1. Напряжение для тестирования ручным мегомметром получают путем вращения кривошипа, электронного типа — аккумулятором.
  2. 500В DC достаточно для выполнения тестирования систем работающих с напряжением до 440 В, а режим 1000 В до 5000 В — для испытаний высоковольтных электрических систем.
  3. Отклоняющая или токовая катушка соединена последовательно и позволяет пропускать электрический ток, принимаемый проверяемой цепью.
  4. Катушка управления, подключена к цепи.
  5. Токоограничивающий резистор (CCR и PCR) соединен последовательно с катушкой управления для защиты от повреждения в случае очень низкого сопротивления во внешней цепи.
  6. В мегомметре с ручным управлением эффект электромагнитной индукции используется для создания тестового напряжения. По мере увеличения его во внешней цепи, отклонение указателя увеличивается и уменьшается с увеличением тока.
  7. Работа тестера базируется на принципе омметра. Крутящий момент создается мегомметром из-за магнитного поля, создаваемого напряжением и током, аналогично закону Ома. Крутящий момент мегомметра меняется пропорционально V/I: V = IR или R = V / I, единица 1 Ом.
  8. Измеряемое электрическое сопротивление подключается через генератор и последовательно с отклоняющей катушкой. Когда проверяемая электроцепь разомкнута, крутящий момент из-за катушки напряжения будет максимальным, а стрелка показывать «бесконечность», что означает отсутствие короткого замыкания во всей цепи и имеет максимальное сопротивление в проверяемой цепи.

Важно! Если имеется КЗ, указатель показывает «ноль», что означает полное отсутствие сопротивление изоляционного покрытия

Аппараты для испытаний

  • АИИ – 70 – одна из наиболее популярных стационарных установок, применяемых в испытании и фазировке силовых кабелей, вводов, проверке прочности жидких диэлектриков на пробой и т.д. Может обеспечивать как постоянное напряжение на выходе (максимально 70 кВ), так и переменное (50 кВ).
  • АИД-70 – является диодным аналогом предыдущей модели. Наиболее широко применяется для испытания как постоянным, так и переменным напряжением в передвижках или переносных агрегатах, в лабораториях.
  • ИВК-5, АИ-2000, КУ-65 и прочие – установки с диодной схемой. Применяется для продавливания вторичных электрических цепей.


Принципиальная схема ИВК

Как и в других схемах, здесь используется трансформатор (АТ), диодные выпрямители (В), резисторы (Р), трансформатор тока (Т) сигнальные светодиоды и устройства для съема показаний (v, mA). На том же принципе основан ряд других портативных устройств.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий