Устраняем мигание Led прожектора
Мигание – самая частая неисправность LED-прожекторов. Они мерцают включенные и выключенные, в мороз и при перегреве.
Причиной может служить:
- датчик движения;
- замерзание пускового конденсатора или контроллера;
- разрыв проводки или плохой контакт в соединении;
- неверное подключение выключателя с подсветкой;
- неисправность элементов драйвера;
- неисправность матрицы.
Датчики движения требуют настроек, без них LED-прожектор не может работать дольше нескольких секунд. Осветительный прибор мигает так же в том случае, если между ним и датчиком плохой контакт в соединениях проводов. Ремонт своими руками заключается в закреплении соединений. Если датчик движения вышел из строя, его нужно заменить.
Если прожектор мигает во время свечения, необходимо проверить пусковой конденсатор. Мерцание в выключенном состоянии свидетельствует о том, что через выключатель с подсветкой ток подается на прожектор. Мощности для включения недостаточно, поэтому прибор мигает. Ремонт своими руками — подключение подсветки напрямую.
Ремонт светодиодного прожектора своими руками при выходе из строя матрицы или блока питания сложнее. Прибор нужно разобрать и провести диагностику.
Почему матрица мигает или не светится при перегорании
Чтобы понять причину моргания, необходимо знать устройство и характеристики матрицы. Диоды в ней соединены медными (реже золотыми) подводами, которые при нагревании отслаиваются и отключают весь модуль или отдельную линейку. После остывания металла контакт возобновляется, прибор светится. Так продолжается до тех пор, пока один из подводов окончательно разрывается, прожектор не работает.
Ремонтируем матрицу
Чтобы определить, какие диоды вышли из строя, во время работы LED-прожектора нужно надавить неострым предметом не места соединения подводов и кристаллов. При нажатии на проблемные места прибор начнет светиться. Другой метод диагностики – прозвон каждого диода. Если не работает несколько ламп, их можно заменить.
Если в прожекторе не матрица, а много маленьких SMD светодиодов, требуется микропаяльник с мощностью 10-15 Вт. Можно так же надеть на стандартный пальник жало из медной проволоки.
На первый взгляд ремонт своими руками простой: найти неисправный диод, выпаять, припаять новый. На практике это осуществить трудно из-за сложности технологического процесса. Во время пайки не должны повредиться ни печатные проводники, ни лампы. При установке в плату необходимо следить за полярностью светодиодов. Если нет навыков и опыта, заменить светодиоды своими руками практически невозможно.
Необходимые детали и материалы
Все материалы, используемые в сборке, есть в хозяйственных магазинах и в отделах по продаже радиоэлектронных компонентов. В крайнем случае их можно заказать через онлайн-магазины. Главная деталь – это корпус от галогенного прожектора.
Далее понадобится двусторонний фольгированный стеклотекстолит прямоугольной формы. Его размер зависит от внутренних размеров корпуса галогенного прожектора. Для крепления текстолита потребуется алюминиевая пластина, которая также будет служить теплопроводом между светодиодами и корпусом прожектора.
Светодиоды будем устанавливать SMD 5050 в количестве 100 шт. Для их питания потребуется набор недорогих радиоэлементов, о выборе которых будет сказано чуть ниже. Для монтажа компонентов на печатную плату понадобится стандартный инструмент радиолюбителя. Кроме этого, пригодится умение изготавливать самодельные печатные платы, термопаста и провода.
Причины поломки
Несмотря на стремительно растущий ассортимент светодиодных ламп на 220В, их внутреннее устройство основано на общих принципах схемотехники. Визуальные конструктивные и схемные отличия носят исключительно экономический характер. Поэтому восстановив работоспособность одной лампы, ремонт каждой последующей будет проходить быстрее. Особенно это правило работает с дешёвыми китайскими светодиодными лампочками.
Конечно отличия между светодиодными лампами присутствуют. С них и начнём. Первое – это количество светодиодов в лампе. Оно зависит от мощности LED-лампы и типа самих светодиодов. В лампах и светодиодных светильниках первого поколения устанавливали светодиоды с линзой, сейчас же всё базируется на SMD элементах. Часто на плате размещают не более 10 одноваттных светодиодов, реже встречаются модели, внутри которых находятся около 50 светодиодов малой мощности. В любом случае все они соединены между собой последовательно. Это означает, что при выходе из строя одного светодиода, остальные перестают светиться. Почему светодиоды с заявленным сроком службы 30 тыс. ч. так быстро умирают? Причин несколько: использование элементной базы низкого качества, отсутствие стабилизации по току, перегрев кристалла, скачки сетевого напряжения. Некоторые производители изначально «перегружают» светодиоды, чтобы произвести впечатление на покупателя высокой яркостью от миниатюрного светодиодного светильника.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Подключение светодиода к источнику питания 12 В может быть осуществлено несколькими способами. Первым вариантом решения задачи является увеличение последовательно соединенных светодиодов в цепи. Второй способ связан с применением токоограничивающего резистора.
Электрическая схема светодиодного прожектора
На фотографии приведена типовая электрическая схема драйвера светодиодного прожектора. Принцип работы схемы любого драйвера прожектора одинаковый.
Напряжение из бытовой сети подается на вход драйвера через предохранитель F1, фильтруется с помощью LС элементов и выпрямляется диодным мостом. Далее сглаживается электролитическим конденсатором С13. На выводах конденсатора создается напряжение постоянного тока величиной около 280 В.
С конденсатора C13 напряжение подается через токоограничивающие резисторы на стабилитрон D12 и вывод 6 микросхемы. Стабилитрон обеспечивает питание микросхемы напряжением 9 В, которое является опорным для работы драйвера в целом. С конденсатора C13 напряжение поступает также через обмотку трансформатора Т1.1 на вывод полевого транзистора Q1 работающего в ключевом режиме.
Работает драйвер следующим образом. С вывода 5 микросхемы на затвор транзистора Q1 поступают высокочастотные импульсы, благодаря которым сопротивление между его стоком и истоком становиться близким к нулю. В этот момент через первичную обмотку трансформатора проходит ток, благодаря которому на вторичной обмотке появляется напряжение. Оно выпрямляется быстродействующим диодом SF28 и сглаживается электролитическим конденсатором SC1. Величина тока, протекающего через LED матрицу, определяется величиной сопротивления резисторов, установленных с 3 вывода микросхемы на общий провод.
Наиболее часто выходят из строя – электролитические конденсаторы (их легко определить по внешнему виду — вспучены), диоды мостового выпрямителя, полевой транзистор, высокочастотный диод и стабилитрон (в случае его обрыва выходит из строя микросхема).
Причина перегорания светодиодной матрицы в прожекторе
Обычно светодиодные матрицы выходят из строя из-за перегрева. Решил разобраться, почему в данном прожекторе, несмотря на толстостенный дюралюминиевый корпус, являющийся одновременно и радиатором перегорела светодиодная матрица.
Первое, что бросилось в глаза, это крепление матрицы с помощью двух винтов, а не четырех, что предусмотрено ее конструкцией. Головки винтов были конической формы, что могло привести при сильном закручивании винтов к деформации подложки матрицы.
После отпайки токоподводящих проводников и откручивания винтов матрица легко отделилась от корпуса прожектора. На снимке внешний вид. Выборки в углах подложки вместо отверстий снижают вероятность равномерного прижима ее к радиатору.
Причина выгорания светодиодной матрицы стала очевидной после осмотра ее обратной стороны. Участок подложки, противоположный прогоревшему участку со светодиодами не был покрыт теплопроводящей пастой, хотя паста на корпусе прожектора была нанесена равномерно.
Обычно участок радиатора, к которому прижимается тепловыделяющий элемент, шлифуется. В прожекторе это правило нарушено вдвойне, так как площадь корпуса, к которой прижимается светодиодная матрица, не шлифована, и еще окрашена краской типа шагрень, что существенно снижает отвод тепла с матрицы.
Исходя из вышесказанного, можно сделать заключение, что светодиодная матрица вышла из строя из-за перегрева по причине плохого ее прижима к корпусу прожектора при сборке.
Перед установкой матрицы в корпус прожектора, место ее контакта было обработано наждачной бумагой до блеска алюминия и нанесена свежая термопаста.
Ремонт прожектора
Ремонт заключался в демонтаже перегоревшей матрицы и неисправного драйвера и установки современной светодиодной матрицы с встроенным драйвером, и дополнительной схемы выпрямительного моста с электролитическим конденсатором в корпус прожектора.
Установка LED матрицы
Для того чтобы добраться до матрицы необходимо снять защитное стекло и рефлектор, для чего понадобилось открутить четыре винта.
Для удаления матрицы нужно отпаять или откусить бокорезами провода и открутить еще четыре винта. Кода матрица была снята, то стало ясно, почему она сгорела. Теплопроводящая паста покрывала ее подложку не по всей поверхности.
В дополнение, место установки было окрашено, и еще вокруг крепежных резьбовых отверстий имелись выступающие площадки, как и вокруг непонятных прямоугольных углублений. Налицо конструкторская недоработка и небрежная сборка производителем прожектора.
Сгоревшая матрица имела размеры 20×20 мм, а устанавливаемая – 40×60 мм, поэтому пришлось делать новые крепежные отверстия. При разметке еще пришлось сдвинуть матрицу относительно центральной оси, чтобы крепежные отверстия не попали в теплоотводящие ребра корпуса. В дополнение также надо было оставить одно из двух отверстий для прокладки проводов. Сверлить новое отверстие для проводов не хотелось, так как штатное герметично соединялось с задней частью прожектора.
После разметки было просверлено четыре отверстия диаметром 2 мм и затем в них нарезана резьба метчиком М2,5.
Примерка показала, что все сделанные отверстия точно совпали с крепежными отверстиями матрицы. Если бы немного промахнулся, то отверстия в матрице можно пропилить с помощью надфиля. Рядом с ними нет токоведущих дорожек и элементов.
На следующем шаге с помощью наждачной бумаги средней зернистости необходимо подготовить теплоотводящую поверхность, сняв краску и удалив выступающие бугры.
После десяти минут работы поверхность стала идеально ровной и готовой для крепления матрицы. Оставшиеся крепежные отверстия имеют небольшую площадь и на отвод тепла влиять практически не будут.
Для хорошего теплового контакта подложки матрицы с алюминиевым корпусом прожектора, который одновременно является и радиатором, место их соединения необходимо покрыть тонким слоем специальной теплопроводящей пасты. Размазывать пасту удобно с помощью банковской карты или визитки. Паста продается в магазинах компьютерной техники, можно заказать на Алиэкспресс при покупке матрицы.
Матрица закреплена в корпусе с помощью винтов М2,5 с плоскими шайбами для увеличения площади прижатия. Залудить контактные площадки матрицы и припаять провода лучше перед установкой. Провода я использовал с двойной изоляцией, но для надежности целесообразно использовать специальный термостойкий провод. У меня такого достаточной длины под руками не оказалось.
Рефлектор прожектора имел отверстие для светового потока матрицы недостаточного размера, пришлось его после разметки дорабатывать.
Для этого с помощью мини дрели и наждачного диска рефлектор был пропилен по граням. Края загнуты плоскогубцами, и лишний металл отрезан ножницами.
На фотографии показан результат работы по установке LED матрицы с драйвером на подложке. Вся ее светоизлучающая поверхность открыта для светового потока.
Установка в прожектор диодного моста и конденсатора
Печатную плату ради монтажа шести радиоэлементов изготавливать не стал, тем более, что в наличии была подходящая плата от драйвера светодиодной лампы. Выпаял из нее лишние элементы, впаял предохранитель и токоограничивающий резистор.
Провода, идущие от светодиодной матрицы, были припаяны непосредственно к выводам конденсатора, а его выводы уже к плате. Один из проводов сетевого шнура был припаян к плате, а второй на вывод включателя, а с него уже к плате.
Для изоляции печатной платы была использована укороченная упаковка от драже Тик-Так. Идеально подошла по размерам. Под сетевой шнур в упаковке была сделана прорезь.
Светодиодный прожектор отремонтирован без использования драйвера, и можно приступать к его испытаниям. При первом включении он не засветил. Оказалось, что установленный предохранитель на ток защиты 1 А не выдержал пускового тока зарядки конденсатора и перегорел.
Величину токоограничивающего сопротивления увеличивать не хотелось, поэтому пришлось установить предохранитель на 2 А. При многократном включении, выключении и длительной работе прожектор светил безотказно. Корпус нагревался незначительно.
Принцип работы и схема
На вход преобразователя напряжение поступает через предохранитель (или реле датчика движения). Его выпрямляет диодный мост и сглаживает конденсатор. На выходе из конденсатора ток постоянный. Далее напряжение через резистор подается в стабилитрон и трансформатор.
Из стабилитрона выходит 9 В, необходимые для работы преобразователя, из трансформатора – высокочастотные импульсы на полевой транзистор. В полевом транзисторе сопротивление снижается почти до ноля, при прохождении тока через первичную обмотку трансформатора создается напряжение во второй обмотке. После выпрямления диодом и сглаживания конденсатором ток поступает в матрицу, диоды загораются.
Это стандартная схема, она может отличаться в зависимости от моделей и производителей.
Что делать, если мощность светодиодного модуля неизвестна
Бывают ситуации, когда имеется светодиодный чип, но его мощность, ток и напряжение неизвестны. Соответственно, его затруднительно купить, а если он исправен, то непонятно, как подобрать адаптер.
Для меня это было большой проблемой, пока я не разобрался. Делюсь с вами, как по внешнему виды светодиодной сборки определить, на какое она напряжение, мощность и ток.
К примеру, имеем прожектор с такой светодиодной сборкой:
9 диодов. 10 Вт, 300 мА. На самом деле – 9 Вт, но это в пределах погрешности.
Дело в том, что в светодиодных матрицах прожекторов используются диоды мощностью 1 Вт. Ток таких диодов равен 300…330 мА. Естественно, всё это примерно, в пределах погрешности, но на практике работает точно.
В данной матрице 9 диодов включены последовательно, ток у них один (300 мА), а напряжение 3 Вольта. В итоге, общее напряжение 3х9=27 Вольт. Для таких матриц нужен драйвер с током 300 мА, напряжением примерно 27В (обычно от 20 до 36В). Мощность одного такого диода, как я говорил, около 9 Вт, но в маркетинговых целях этот прожектор будет на мощность 10 Вт.
Пример 10 Вт – немного нетипичный, из-за особенного расположения светодиодов.
Другой пример, более типичный:
Светодиодная сборка для прожектора 20 Вт
Вы уже догадались, что два горизонтальных ряда точек по 10 шт – это светодиоды. Одна полоска – это навскидку 30 Вольт, ток 300 мА. Две полоски, соединенные параллельно – напряжение 30 В, ток в два раза больше, 600 мА.
Ещё пара примеров:
5 рядов (зиг-заг) по 10 светодиодов.
Итого – 50 Вт, ток 300х5=1500 мА.
Матрица 7 рядов по 10 светодиодов
Итого – 70 Вт, 300х7=2100 мА.
Думаю, продолжать не смысла, уже всё понятно.
Немного другое дело с светодиодными модулями на основе дискретных диодов. По моим подсчетам, там один диод, как правило, имеет мощность 0,5 Вт. Вот пример матрицы GT50390, установленной в прожекторе 50 Вт:
Светодиодный прожектор Navigator, 50 вт. Светодиодный модуль GT50390 – 90 дискретных диодов
Если, по моим предположениям, мощность таких диодов – 0,5 Вт, то мощность всего модуля должна быть 45 Вт. Схема его будет такой же, 9 линеек по 10 диодов с общим напряжением около 30 В. Рабочий ток одного диода – 150…170 мА, общий ток модуля – 1350…1500.
У кого другие соображения на этот счет – милости прошу в комментарии!
Подписывайтесь! Там тоже интересно!
Светодиодная матрица прожектора
Выяснить причину этого явления достаточно просто. Нужно более внимательно присмотреться к самому светодиоду во включенном положении прожектора.
Яркие вспышки конечно будут ослеплять. Поэтому воспользуйтесь затемненным стеклом.
Через него можно легко разглядеть те самые отдельные элементы, которые и вспыхивают.
Мощные светодиоды состоят из множества одно ваттных кристаллов. Их соединяют последовательно в отдельные линейки с помощью тонких золотых проводков.
По количеству светодиодов можно легко определить мощность прожектора.
В большинстве случаев все кристаллы светят с синеватым оттенком, а белый свет образуется благодаря частичкам люминофора, который входит в состав компаунда.
Во время работы кристаллы сильно греются. Выделяющееся при этом тепло отводится на металлическую пластину.
Но почему же на приведенном фото выше, светятся только 10 светодиодов? Неужели 40 из 50 просто сгорели?
Ремонтируем светодиодный прожектор
- Что случилось или причина неисправности прожектора
- Ремонт прожектора своими руками
- Как работает светодиодный прожектор?
- Улучшение светодиодных элементов
Светодиодный прожектор—это один из востребованных и популярных устройств, применяемых для освещения придомовой территории. Это средство довольно удобно в эксплуатации, но рано или поздно оно потребует ремонта
Поэтому так важно знать навыки правильного выявления неисправности, устранения дисфункции и уметь вернуть прибор в нормальное состояние
Внимание! В базовых светодиодных прожекторах не предусмотрена замена источников света на другой с иной мощностью
Что случилось или причина неисправности прожектора
Зачастую поломка светодиодного фонаря происходит из-за перегрева матрицы. Перегрев влечет за собой сгорание предохранителей. Таким образом, косвенными причинами, приводящими к дисфункции прибора, считаются:
- короткое замыкание;
- подключение сверхтоков;
- перенапряжение;
- подключение к неправильной сети;
- несоблюдение схемы подключения устройства.
Рассмотрим, как образуется дефект матрицы более подробно. Матрица—это устройство, работающее при помощи кристаллов. Их, как правило, насчитываются десятки, и в случае выхода из строя трех или пяти кристаллов, приспособление продолжает работать в прежнем режиме. Полное сгорание матрицы требует вмешательства. В таких ситуациях идеально провести полную замену матрицы.
Важно! В процессе ремонтных работ следует дополнительно заизолировать проводники прожектора. Также, практически во всех случаях происходит отказ светодиодных источников от работы исключительно из-за неисправности драйверов, которые питают кристаллическую поверхность прожектора
Если ваше устройство пришло в негодность в процессе гарантийного периода, в торговой точке, вам должны оказать помощь и сделать замену приспособления бесплатно. В противном случае, прибегать к ремонту придется самостоятельно либо оплачивать специалистам.
Для доступа к внутренностям прожектора необходимо открутить заднюю крышку
Ремонт прожектора своими руками
Прежде чем приступить к ремонтным работам, следует обзавестись необходимым инструментом, а также уточнить причину неисправности светодиодных прожекторов и их устранение провести должным образом. Частыми претендентами на ремонт считаются светодиодные устройства китайского производства с общей мощностью 10 Ватт, следовательно, рассмотрим устранение проблем на примере такого прибора. Ознакомимся с алгоритмом действий:
- Открепляем крышку корпуса прибора, чтобы добраться к внутреннему механизму.
- Снимаем стеклянную защиту и рассеиватель света.
- Отпаиваем светодиодный источник от матрицы.
- Припаиваем его же к новой работоспособной кристаллической панели.
- Закрепляем каждый болт, проверяем прожектор мультиметром.
- Если прозвонка показывает рабочее положение, значит, крепим фонарь на свое место и наслаждаемся дальнейшей его работой.
Важно знать! Перед установкой новой матрицы необходимо соблюсти полярность
После разбора прожектора можно приступать к ремонту
Обращаем внимание новичков, после устранения неисправности, следует действовать в обратном порядке. Кроме того, есть возможность выяснить сбои в работе по следующим признакам:
- мерцание лампочки;
- тусклое горение;
- смена оттенков светодиода;
- деформация проводов и нарушение изоляции.
Как работает светодиодный прожектор?
Прибор работает благодаря совместной работе нескольких установленных систем: оптики, источников питания, драйверов и теплоотводящих элементов. Внутри корпуса находятся светодиоды и маленькие электронные элементы. Источник питания приводит напряжение к светодиодному элементу, который прообразовывает ток в световые лучи, за счет чего происходит свечение прожектора.
Внимание! Нельзя вскрывать герметичный корпус светодиодного прожектора без надобности
Улучшение светодиодных элементов
После того как отремонтировали светодиодный прожектор и убедились в его работоспособности, можно немного улучшить прибор. В некоторых устройствах, которые нормально работают в условиях мощности 220 Вольт обычно не устанавливается выпрямитель и стабилизатор. Выполняя ремонт самостоятельно, такие приспособления установить очень легко. Для этого следует последовательно соединить пары светодиодных источников, которые включаются встречно и к ним приложить балластный конденсатор. Посмотрите небольшую видео-инструкцию о ремонте светодиодных прожекторов своими руками:
опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
sxemy-podnial.net
Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.
Светодиодные светильники. Фото 1.
Драйвер светодиодного светильника на CL1502. Рис. 1.
В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в . Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.
В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.
В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.
Драйвер светодиодного светильника на B77CI. Рис. 2.
Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».
Фонарь светодиодного светильника. Рис. 3.
Внешний вид платы драйвера на B77CI. Фото 2.
Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.
И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.
Источник
Вывод
В заключение акцентируем внимание на том, что когда прожектор включается самостоятельно, надо сделать следующее:
- проверить подключение устройства;
- сменить вид выключателя;
- если прожектор работает с датчиком движения, проверить его на совместную работу с LED-устройством.
Специалисты обращают внимание на тот фактор, что причиной этого явления может быть дешевизна осветительных устройств, они не дают гарантии длительной эксплуатации. Занимаясь ремонтом, вам надо уметь обращаться с паяльником, электрическими приборами измерений, читать схемы соединений и принципиальную схему устройства