Что такое симистор и как с его помощью управлять нагрузкой

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.


Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Конструкция и принцип работы

Структура симметричного тиристора складывается из пластинки, состоящей из поочередных слоёв с электропроводами p- и n- вида и из контактов электродов главного и управляющего действия.

Всего в структуре полупроводника находится 5 слоёв p- и n-вида. Область между пластами именуется p-n-переходом, который владеет нелинейной ВАХ с незначительным противодействием в противоположном направлении, где минус — это n-прослойка, а плюс — p-прослойка и высочайшее значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжениях в несколько тысяч вольт.

Во время введения механизма в прямолинейном направлении в работу входит правая половина структуры. Левосторонняя область структуры выключена, она считается для тока с обладанием весьма высоким противодействием.

Характеристики симметричного тиристора динамического и постоянного плана при его воздействии в прямом направлении, при поступлении позитивного управляющего сигнала отвечают аналогичным данным тиристора, работающего в непосредственном направлении.

Как работает симистор? Принцип работы устройства основан на прохождении электросигнала в двух направленностях. Это даёт возможность применять симисторы в качестве электрического реле в различных схемах, где необходимо корректировать нагрузку или проход тока по цепи. Одним из бесспорных превосходств симметричного тиристора считается и тот факт, что для предоставления проходного канала не требуется присутствие постоянного уровня напряжения в управляющем ключе. Нужно только наличие его не выше определённого уровня, в зависимости от использования.

Сфера применения

Принцип работы и компактные размеры симисторов позволяют применять их практически повсеместно. В самом начале своего появления триаки использовались при проектировании мощных трансформаторов и зарядных устройств. Сегодня же, с развитием производства небольших полупроводников, симметричные тиристоры стали значительно компактнее, что позволяет использовать их в самых различных установках и сферах.

В промышленности мощные приборы используются для управления станками, насосами и другим электрооборудованием, где требуется плавное изменение проходящего тока. В быту применение симисторов еще более обширно:

  • Это практически весь электроинструмент: от ручной дрели и шуруповерта до зарядного устройства для автомобильных аккумуляторов;
  • Многие бытовые электроприборы: пылесосы, фены, вентиляторы и так далее;
  • В бытовых компрессорных установках (кондиционеры и холодильники);
  • Электронагревательные устройства: камины, духовки, СВЧ печи.

Повсеместное применение триаков послужило толчком для разработки – популярного сегодня устройства для плавного регулирования освещения. Принцип работы механического диммера основан на использовании симистора.

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

Можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Симистор — мощный ключ для сети 220 В

Самый простой способ управления нагрузкой 220В — использовать реле. Оно позволяет с помощью постоянного напряжения управлять мощной нагрузкой. В этой статье не будет рассматривать этот метод, он достаточно простой. Достаточно подать напряжение на магнит реле и он замкнёт контакты. К сожалению, реле не позволяет управлять нагрузкой достаточно быстро. При большом количестве включений\выключений оно быстро выходит из строя. Также, в момент переключения возникают большие импульсные помехи. Использовать реле лучше при частоте управления не больше одного раза в 2-3 секунды.

Как мы уже знаем по статье «Как управлять мотором постоянного тока» в цепях постоянного тока транзистор является электронным ключом, устройством, которое позволяет малым напряжением или током управлять более мощной нагрузкой.

Для переменного тока тоже существуют такие электронные ключи — мисто.

Симистор проводит ток в обоих направлениях, поэтому используется в сетях переменного тока. Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой.

Для удержания симистора в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Он остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети переменного тока). Эта точка на синусоиде называется переходом через ноль.

Симистором можно управлять напрямую от микроконтроллера, но для этого нужен довольно большой ток — 10-20 мА. Существуют также логические симисторы. У них ток управления составляет около 5 мА. В схемах лучше использовать обычные симисторы, они более защищены от самопроизвольного открытия. Что это такое и как можно управлять обычными симисторами? Читаем дальше.

Для начала посмотрим насколько мощной нагрузкой может управлять типичный симистор. Возьмём для примера симистор BT139-800.

В datasheet обычно приводят графики выделяемой мощности на симисторе при управлении нагрузкой. Вот пример такого графика.


Зная выделяемую мощность, используем параметры рассеивания тепла корпусом, чтобы получить температуру нагрева симистора и оценить его работоспособность.

Из всех этих параметров следует, что без радиатора данный симистор может рассеять около 2Вт тепла. При управлении полными полупериодами нужно брать график тока для a=180 градусам. График в этой области практически линейный, поэтому можно сказать, что средний ток будет около 2А.

То есть без радиатора этот симистор сможет управлять нагрузкой в 2А * 220В = 440 Вт. В остальных случаях нужен будет радиатор.

Теперь разберёмся как микроконтроллер может управлять мощным симистором?

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Простейшая схема симисторного регулятора и принцип ее работы

На рисунке ниже изображена самая простая схема регулятора мощности на симисторе. Проще никак. Для начала рассмотрим компоненты, из которых состоит устройство, и зачем они там нужны.

Схема регулятора мощности на симисторе

В данной схеме присутствует всего 5 радиодеталей:

  1. Симистор U1.
  2. Динистор D1.
  3. Конденсатор C1.
  4. Переменный резистор RV1.
  5. Резистор R1.

Симистор U1 – является основным компонентом схемы. Все остальные радиодетали «работают на него». У симистора бывает всего два рабочих состояния – он может быть либо открыт, либо закрыт. Когда он открыт, электрический ток беспрепятственно протекает через него от источника питания к нагрузке. Когда закрыт – ток не течет.

Чтобы «заставить» симистор открыться и пропускать ток, на его управляющий вывод (на схеме находится слева) необходимо подать небольшое напряжение. Закрывается же он «самостоятельно», как только ток перестает течь через основные выводы.

В целом, работает это следующим образом. Напряжение в наших розетках переменное, соответственно, ток тоже бежит то в одну сторону, то в другую с частотой 50 раз в секунду. Если в момент, когда он течет, например, от источника питания к нагрузке, «заставить» симистор открыться, наш прибор получит «дозу» питания и проработает немножко.

Затем ток меняет свое направление, так как напряжение у нас переменное. Это приводит к тому, что симистор закрывается.

Поскольку направление тока из розетки может изменяться по направлению 50 раз в секунду, то мы каждый этот раз можем «пропустить» через нагрузку столько тока, сколько нам надо для получения желаемой мощности.

Динистор D1 – как раз и «занимается» тем, что заставляет симистор открываться в нужный нам момент. У этого компонента тоже есть всего два состояния – открыт (пропускает ток) и закрыт (не пропускает). Чтобы динистор открылся, и подал на симистор управляющий сигнал, к нему необходимо приложить определенное напряжение (около 30 В). Если напряжение меньше этого значения – он закрыт.

Конденсатор C1 – нужен для того, чтобы открывать динистор D1. Происходит это следующим образом. Когда переменный ток течет в одном из направлений, конденсатор «постепенно» заряжается, и напряжение на его выводах увеличивается. Когда оно достигает значения, достаточного для открывания динистора, последний именно это и делает. А конденсатор возвращается в исходное состояние, то есть, разряжается. И так 50 раз в секунду.

Резисторы R1 и RV1 – ограничивают ток через наш конденсатор. Чем меньше их суммарное сопротивление, тем быстрее конденсатор заряжается и достигает нужного для открытия динистора напряжения. Когда сопротивление резисторов увеличивается, ток течет меньший, и заряд конденсатора происходит медленнее.

Теперь рассмотрим слаженную работу всех этих компонентов вместе. Симистор на каждой полуволне переменного напряжения (50 раз в секунду) открывается и закрывается на определенный промежуток времени, пропуская, или наоборот, не пропуская через себя ток. В зависимости от длительности этого промежутка времени нагрузка (паяльник, двигатель, лампа) получает то или иное напряжение.

Открывается симистор в тот момент, когда на динисторе появляется достаточное для его пробоя (открывания) напряжение. За то, на каком моменте полуволны это произойдет, отвечает конденсатор. А насколько быстро или медленно он будет заряжаться, зависит от сопротивления резисторов в данный момент.

В итоге, если мы будем вращать ручку переменного резистора, мы будем менять время заряда конденсатора, момент срабатывания динистора и открывания симистора. Когда сопротивление потенциометра минимальное (ручка выкручена до упора влево), ток через конденсатор максимально большой, заряжается он быстро, динистор открывается рано, и симистор на протяжение почти всей полуволны пропускает ток на нагрузку.

Когда мы выкручиваем ручку в сторону увеличения сопротивления потенциометра, процесс заряда конденсатора замедляется, динистор открывается позже, а симистор пропускает в результате меньше тока на нагрузку.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

Вам это будет интересно Особенности сети передачи электроэнергии

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Внешний вид следующий:

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  • В стиральной машине.
  • В печи.
  • В духовках.
  • В электродвигателе.
  • В перфораторах и дрелях.
  • В посудомоечной машине.
  • В регуляторах освещения.
  • В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Будет интересно Что такое полупроводниковые диоды и как они устроены

Поделитесь в социальных сетях:FacebookX
Напишите комментарий