Характеристика RGB светодиода

Как устроен RGB-светодиод и его назначение

Светодиодная лента состоит из 3 цветных кристаллов и 4 выходов: 12 (общий вывод), R (Red), G (Green), B (Blue). Основные комплектующие помещены в пластиковый корпус. Также в некоторых моделях RGB LED Arduino присутствуют встроенные резисторы. Они подключены к цветным выходам. Анодные и катодные электроды обладают самыми длинными выводами.

Одной из самых современных моделей RGB Ардуино является адресная светодиодная лента. Она состоит из диодов и контроллера. В это устройство по умолчанию встроены 3 полевых транзистора, что позволяет регулировать цвет светодиодов по отдельности.


Устройство светодиоида. Для питания резисторов и выводов нужно подключить адресную ленту к следующим приборам:

  1. Powerbank 5V: лента подсоединяется к данному устройству при помощи USB-штекеров. Емкость Powerbank 5V составляет 3350 мА*ч, что позволяет питать светодиоды током с силой 3А.
  2. Батарейки АА: используются в количестве 3 шт. Общая емкость этих приборов составляет 180 мА*ч. Они подают ток с напряжением до 5,5 В. Рекомендуется использовать батарейки AA, изготовленные из лития или апкалина.
  3. Никелевые аккумуляторы: имеют напряжение до 1,4 В. Для питания RGB Arduino требуется не менее 4 аккумуляторов из никеля. Емкость сборки составляет 2700 мА*ч.
  4. Литиевые аккумуляторы: имеют напряжение 4,2 В. В процессе эксплуатации значение этого показателя снижается до 3 В. Литиевые аккумуляторы позволяют сохранять полную яркость светодиодов. Они питают диоды током с силой до 2 А.

В зависимости от способа подачи электрического тока светодиоды будут гореть разными цветами. Если подать питание на 3 цветных светодиода одновременно, то кристаллы станут белыми. Для настройки цветовой гаммы Arduino RGB используются контроллеры с пультом управления. Они состоят из 3 полевых транзисторов и микропроцессора. Это приспособление позволяет настроить цветовую гамму светодиодов на дальнем расстоянии. Работа контроллеров с пультом управления обеспечивается при помощи скетчей, написанных в программной среде Ардуино.

Выделяют 2 основные модели RGB LED Arduino:

  1. WS2811: светодиоды питаются от чипа WS2811, расположенного отдельно от RGB-ленты. Питание устройства составляет 12 В.
  2. WS2812b: представляет собой ленту с напаянными светодиодами. В диоды встроены чипы WS2812b. Они позволяют менять окрас светодиодов по отдельности. Питание ленты WS2812b составляет 5 В.

Основными преимуществами RGB LED Arduino являются простота конструкции и высокий КПД. Эти приспособления активно используются при изготовлении осветительных приборов и декоративных подсветок. Также технология RGB нашла применение в трехмерной графике и WEB-разработке.

Соединение ленты с контроллером

После того как контакты ленты с RGB-светодиодами подготовлены, можно приступить к ее подключению. Здесь также никаких проблем не возникает – все контакты промаркированы. Если же по какой-то причине наклейка с обозначениями отсутствует, нужно снова брать в руки мультиметр. Алгоритм действий таков.

  1. На контроллер подается питание. Переключатель устанавливается на 20 В постоянного тока.
  2. Крайний правый контакт – «+». К нему присоединяется красный щуп мультиметра.
  3. При помощи пульта включается зеленый цвет, находится и маркируется контакт.
  4. Те же действия проводят с оставшимися двумя оттенками.

Подключение контроллера производится после того, как монтаж RGB-ленты завершен. А провода от нее протянуты до места установки устройства управления.

3Управление RGB светодиодами с помощью Arduino

Перепишем классический скетч blink. Будем включать и отключать по очереди каждый из трёх цветов

Обратите внимание, что светодиод загорается, когда мы подаём низкий уровень (LOW) на соответствующий вывод Arduino

// задаём номера выводов: const int pinR = 12; const int pinG = 10; const int pinB = 9;void setup() { // задаём назначение выводов: pinMode(pinR, OUTPUT); pinMode(pinG, OUTPUT); pinMode(pinB, OUTPUT);}void loop() { digitalWrite(pinR, LOW); //зажигаем канал Red delay(100); digitalWrite(pinR, HIGH); //выключаем Red delay(200); digitalWrite(pinG, LOW); //зажигаем канал Green delay(100); digitalWrite(pinG, HIGH); //выключаем Green delay(200); digitalWrite(pinB, LOW); //зажигаем канал Blue delay(100); digitalWrite(pinB, HIGH); //выключаем Blue delay(200);}

Элементы платы

Сигнальные разъёмы на матрице

На матрице расположены два сигнальных разъёма с интерфейсом «HUB-75».

  • Входной разъём «DATA IN» принимает сигнальные данные с управляющей платформы.
  • Выходной разъём «DATA OUT» проталкивает сигнальные данные. Это позволяет соединять несколько матриц в цепочку (гирлянду).

ВыводОбозначениеОписание
1R1Сигнал данных красного цвета для верхней половины матрицы
2G1Сигнал данных зелёного цвета для верхней половины матрицы
3B1Сигнал данных синего цвета для верхней половины матрицы
4GNDЗемля
5R2Сигнал данных красного цвета для нижней половины матрицы
6G2Сигнал данных зелёного цвета для нижней половины матрицы
7B2Сигнал данных синего цвета для нижней половины матрицы
8GNDЗемля
9AВыбор адреса строки
10BВыбор адреса строки
11CВыбор адреса строки
12DВыбор адреса строки
13CLKТактовый сигнал для согласования скорости передачи
14LATУправляющий сигнал защёлки
15OEПин контроля отображения свечения всего дисплея
16GNDЗемля

Матрица подключается к управляющей платформе через сигнальный 16-пиновый шлейф.

Ключ на разъёме поможет в распиновке и не даст подключить провод другим путём.

Когда шлейф не закручен и расположен прямо — его пины на разъёмах дублируются. А когда шлейф одним концом перегибается его контакты зеркально отражаются.

Разъём питания матрицы

Напряжение подаётся через четыре провода — питание и земля продублированы для увеличения проходящего тока через провода и разъём.

  • VCC — питание матрицы. Подключите к положительному контакту источника питания
  • GND — земля матрицы. Подключите к отрицательному контакту источника питания.

Каждая LED панель питается строго от 5 вольт. При всех включенных RGB-светодиодах — матрица потребляет ток до 4 ампер. Идеально подойдёт блок питания с выходным напряжением 5 вольт и током 5 ампер.

При подключении нескольких матриц соответственно увеличивайте запас по току в N-раз, где N — количество матриц в цепочке.

На модуле матрицы нет встроенного регулятора напряжения. При подаче напряжения более 5 вольт вы убьёте матрицу!

Драйверы светодиодов

Светодиоды подключены через драйверы светодиодов TC5020AP — выходной 16-битный сдвиговый регистр с выходным током 25 мА на канал.

Логические буферы

На плате распаяно два логических преобразователя уровней 74HC245. Буферы обеспечивают согласования логики между управляющей платформой и матрицей.

Дешифраторы

Для выбора строки используется четыре контроллера ICN2012. В микросхему интегрирован дешифратор 74HC138 и четыре сдвоенных P-канальных транзистора .

RGB лента длиной 15-20 метров

Если нужно подключить 15, 20 метров или более, такой вариант только с одним контроллером уже не подойдет. Есть два выхода:

использовать два контроллера

использовать RGB усилитель

Первый вариант неудобен более высокими затратами. А во-вторых, у вас будет два пульта управления, каждый из которых отвечает за различные участки ленты. И как вы их синхронизируете, тот еще вопрос.

Поэтому лучший вариант, когда все управляется от одного контроллера и с одного пульта. Это можно легко реализовать при помощи rgb усилителя.

Из названия понятно, что его предназначение усиливать сигнал от контроллера. Правда некоторые заблуждаются, полагая, что он нужен для более яркого свечения ленты. И его именно с этой целью можно использовать даже для 5-ти метровых участков. Это не так.

Выбирается он по мощности не всей длины светодиодной ленты, а только того участка, который к нему и подключается, помимо первых 5 или 10 метров.

Двухцветные светодиоды. Как правильно подключать управлять

Как-то раз попросили меня сделать светильник, который бы мог менять цвета, ибо одноцветный может довольно быстро приесться: короче, что-то типа ночника. Конечно, способ подсветки, который описан в данной статье, хорошо подходит и для внутреннего освещения компа, посему данная статья может быть интересна как с точки зрения дизайнерской мысли, так и для любителей моддинга.

Делать обычный трехцветный светильник на тумблерах и трех светодиодах как-то не хотелось, ведь гораздо интереснее, когда количество цветов не ограничивается количеством светодиодов.

Необходимые материалы:

  1. Трехцветный сверхъяркий RGB-светодиод диаметром 8 мм с яркостью так – эдак 4000 мКд (либо 3 сверхъярких светодиода диаметром 3 – 5 мм: синий, зеленый, красный).
  2. Переменные резисторы 0 – 1,5 кОм с выключением нагрузки – 3 шт.
  3. Четырехжильный провод
  4. Кубик оргстекла 30х30х30 мм
  5. Корпус для радиоустройств
  6. 3 ручки для регулировки
  7. Крышка от пластиковой бутылки (или магнит от PC-спикера)
  8. Регулируемый источник питания (если данный девайс Вы будете запитывать от компа, возьмите либо USB- кабель, либо разветвитель питания (molex))
  9. Термоусадка, либо изоляционные кембрики
  10. Черная изолента

Инструменты :

  1. Гравер (он же Дремель) – в принципе можно обойтись и без него
  2. Клеевой пистолет
  3. Набор напильников
  4. Дрель
  5. Надфили
  6. Наждачная бумага
  7. Плоскогубцы
  8. Бокорезы
  9. Пистолетный нож
  10. Зажигалка
  11. Немного фантазии

Итак, приступим.

Для начала рассмотрим трехцветный светодиод. У него имеется 4 вывода: общий (+) и 3 ножки, отвечающие за цвет. Подключая минус к одной из ножек, светодиод будет светиться либо синим, либо зеленым, либо красным цветом. Выглядит он так:

Если присмотреться, можно увидеть, что одна из ножек внутри корпуса светодиода имеет Т-образную форму – это и есть общий (+). На фотографии ножки слева направо: красный (-), общий (+), синий (-), зеленый (-). Если Вы не нашли в продаже трехцветного светодиода, то можно заменить его тремя одноцветными, спаяв их плюсовые ножки воедино.

По-сути нужного цвета светильника можно добиться, изменяя яркость каждого из трех цветов светодиода, которые будут светить одновременно из-под одного плафона и, сливаясь в один цвет, будут давать тот, который нам нужен.

Регулировку яркости будут выполнять переменные резисторы, каждый из которых будет последовательно соединен с ножками цветности светодиода.

Переменный резистор имеет 3 вывода:

Центральная ножка – общий вывод. Вращая ручку по часовой стрелке, сопротивление между первой ножкой и второй (центральная ножка) будет увеличиваться, а между второй и третьей – уменьшаться. Удобней всего задействовать вторую и третью ножку – так вращая ручку по часовой стрелке, будет увеличиваться яркость того цвета, к ножке которого будет подведен данный резистор.

Так как блок управления цветом я решил сделать выносной, пришлось купить корпус для радиоустройств. Размер его должен быть таким, дабы хватало, чтоб разместить 3 переменных резистора. Например, диаметр круглой части у моих резисторов был 15 мм, соответственно был выбран корпус небольшого размера. Маломощные резисторы имеют небольшие размеры, как раз таких и будет достаточно. Корпус представляет собой пластиковую коробку с крышкой, которая крепится на саморезы:

Для начала надо выбрать место расположения ручек и определиться, с какой стороны будет заходить провод в блок управления цветом, и с какой стороны выходить. Затем делаем разметку центров отверстий (сделать это очень удобно шилом). Перед тем как сверлить нужно накернить разметку. Сделать это можно сверлом диаметром 3 мм, пару раз прокрутив его вручную. Теперь сверлим отверстия под провод дрелью на небольших оборотах. Если же сверлить на больших – пластик поплавится и его придется убирать. Размер отверстия естественно будет зависеть от диаметра проводов.

Перед тем, как сверлить отверстия под регулировочные ручки, определяемся со способом монтажа переменных резисторов. Один из способов – это выполнить монтаж на печатной плате и затем скобами ее закрепить к внутренним стенкам корпуса. В этом случае ручки углубляют в корпус, соответственно отверстия делаются под них. Ручки, которые я использовал, выглядят так:

Если же делать навесной монтаж, то можно просто просверлить отверстия в корпусе под крепление переменных резисторов, что собственно я и сделал. Мне, например, просто удобней, если ручка полностью открыта. Когда все отверстия просверлены – убираем заусенции надфилями.

По поводу источника питания – тут можно взять, например регулируемый блок питания от 1,5 до 12 В с шагом 1,5

RGB светодиод

El Светодиодные RGB Это особый тип светодиодных диодов, состоящий из нескольких простых светодиодных матриц, подобных тем, что используются в других одноцветных светодиодах. Таким образом, они могут излучать эти три основных цвета, создавая, таким образом, всевозможные эффекты и цвета (даже белый, сочетающий красный, зеленый и синий одновременно), просто управляя одним из выводов этих компонентов.

3 упакованных светодиода в той же упаковке он способен воспроизводить всю цветовую гамму. Его распиновка немного отличается от обычных светодиодов, так как они включают в себя 3 контакта, по одному для каждого цвета (катоды или +) и еще один дополнительный общий для всех, анод (-). В остальном в этом нет особой загадки …

Цвета и материалы полупроводников

Что интересно, вы знаете, что благодаря тип полупроводника может быть получен разный цвет. Это то, что отличает красные светодиоды от зеленого, желтого, синего и других оттенков. Исследователи комбинируют разные материалы, чтобы получить все цвета, которые в настоящее время существуют на рынке. Например:

  • IRИнфракрасные светодиоды используют GaAs или AlGaAs в качестве материалов для излучения на этой длине волны ИК-излучения.
  • красный: AlGaAs, GaAsP, AlGaInP и GaP используются в цветных светодиодах.
  • Оранжевый: полупроводниковые материалы, такие как GaAsP, AlGaInP, GaP, используются с некоторыми вариациями.
  • желтый: это может быть состав, подобный предыдущему, такой как GaAsP, AlGaInP и GaP, чтобы излучать на длине волны электромагнитного спектра, соответствующей желтому цвету.
  • зеленый: для излучения на этой длине волны необходимы специальные материалы, такие как GaP, AlGaInP, AlGaP, InGaN / GaN.
  • синий: в этом случае используются полупроводники и легирующие примеси на основе таких материалов, как ZnSe, InGaN, SiC и др.
  • Фиолетовый: создается из InGaN.
  • фиолетовый: Двойной синий и красный светодиоды используются для достижения этого цвета. Даже пластик этого цвета с внутренней белой светодиодной подсветкой используется для создания такого эффекта.
  • розовый: нет материала для этого цвета, что сделано, это объединить два светодиода разных цветов для достижения этого цвета, например, красный с желтым и т. д.
  • Белый: это та, которая дала начало нынешним светодиодным лампам чисто белого или теплого белого цвета. Для этого используются синие или ультрафиолетовые светодиоды с желтым люминофором для чистого белого или оранжевым люминофором для теплого белого.
  • UV: ультрафиолетовый спектр может быть получен с помощью различных материалов, таких как InGaN, Diamante, BN, AlN, AlGaN, AlGaInN.

Плюсы и минусы светодиодов RGB

RGB-светодиодам присущи все достоинства, имеющиеся у полупроводниковых светоизлучающих элементов. Это низкая стоимость, высокая энергоэффективность, долгий срок службы и т.д. Отличительным плюсом трехцветных LED является возможность получения практически любого оттенка свечения простым способом и за небольшую цену, а также смена цвета в динамике.

К основному минусу RGB-светодиодов относят невозможность получения чистого белого цвета за счет смешения трех цветов. Для этого потребуется семь оттенков (в качестве примера можно привести радугу – ее семь цветов являются результатом обратного процесса: разложения видимого света на составляющие). Это накладывает ограничения на использование трехцветных светильников в качестве осветительных элементов. Чтобы несколько компенсировать эту неприятную особенность, при создании светодиодных лент применяется принцип RGBW. На каждый трехцветный LED устанавливается один элемент белого свечения (за счет люминофора). Но стоимость такого осветительного устройства заметно возрастает. Также бывают светодиоды исполнения RGBW. У них в корпусе установлено четыре кристалла – три для получения исходных цветов, четвертый – для получения белого цвета, он излучает свет за счет люминофора.


Схема подключения для RGBW-варианта с дополнительным контактом.

Устройство и сферы применения

Конструктивно RGB–светодиоды представляют собой три светодиодных кристалла с одной оптической линзой, расположенные в одном корпусе. Управление цветом происходит с помощью подачи электрических сигналов на выводы каждого светодиодного кристалла, а сочетание излучений всех трех светодиодов позволяет регулировать итоговый цвет. Для примера, ниже представлен самый популярный RGB–светодиод SMD 5050.

Светодиод RGB – это полноцветный светодиод, смешивая три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность, получится свечение белого цвета.

Сферы применения RGB светодиодов напрямую связаны с развитием рынка рекламы и развлекательных мероприятий. Также готовые RGB–светильники и ленты применяются в области светового оформления архитектурных и дизайнерских решений — ночная подсветка зданий или фонтанов, интерьерный свет, индикаторный системы автомобилей и т.д.

Таблица длины волн светодиодов smd 5050, различного свечения

Разнообразие сфер применения многоцветных светодиодных источников света определяет основные виды внешнего оформления RGB–светодиодов: изделия небольшой мощности выпускаются в стандартных круглых корпусах со сферической линзой и выводами под обычную пайку; маломощные RGB–светодиоды в SMD-корпусах поверхностного монтажа широко применяются в светодиодных лентах или полноцветных светодиодных экранах большой площади; в корпусах типа Emitter выпускают мощные RGB–источники света с независимым управление каждым светодиодным кристаллом; сверх яркие светодиоды в корпусах.

Для упрощения систем управления светом в корпуса некоторых серий многоцветных LED–источников света вмонтированы управляющие микросхемы. Схемы расположения выводов (распиновка) Несколько стандартных схем управления определяют структуру внешних выводов RGB–светодиодов и их соединение внутри корпуса. Существует три основных схемы распиновки, которые соблюдаются на большинстве выпускаемых изделий:

  • В схеме с общим катодом для управления используется три независимых вывода анода, а катодные выводы LED-кристаллов соединены между собой;
  • Распиновка с общим анодом управляется отрицательными импульсами на катодные выводы, а вместе соединены уже анодные электроды светодиодных кристаллов;
  • Независимая схема соединения имеет шесть выводов по числу LED кристаллов, соединений внутри корпуса не производится.

Будет интересно Для чего нужны выпрямительные диоды?

Единого стандарта на распиновку не существует, конкретный тип расположения внешних выводов применяют в зависимости от поставленных задач. При отсутствии документов на светодиодное изделие тип внешних выводов легко определить с помощью мультиметра. В режиме прозвонки светодиод будет светиться (мощные светодиоды очень слабо), а мультиметр издавать звук соединения, если красный щуп мультиметра подсоединен к аноду светодиодного кристалла, а черный к его катоду. В случае обратного подключения никаких видимых и слышимых эффектов просто не будет.

Три светодиода и их размеры

Простейший способ подключения и управления режимами работы RGB–светодиодов реализуется с помощью стандартных микроконтроллеров Arduino

Общий вывод подключается к единой шине микроконтроллера, а управляющие сигналы подаются на выводы LED–кристаллов через ограничительные резисторы.Управление режимами свечения светодиодных кристаллов происходит с помощью широтной-импульсной модуляции, где скважность импульсов определяет силу света. Программирование ШИМ–модулятора определяет итоговый цвет всего прибора или циклические режимы работы каждого цвета

Поделитесь в социальных сетях:FacebookX
Напишите комментарий