Что такое резистор и для чего он нужен?

Фильтры и резисторы

С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.

В качестве примера рассмотрим ФНЧ и ФВЧ.

В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие.В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.

Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.

Post Views:
2 083

Переменные регулировочные резисторы

Переменные  (регулирующие)  резисторы  предназначены  для  интенсивной  регулировки так, как  это делается при изменении громкости в аудиоусилителях.

Основная характеристика таких резисторов  –  тип зависимости сопротивления  от  регулирующего  воздействия  (угла  поворота  вала  или  перемещения движка). Реализуются три типа зависимости (показано на  рисунке  1.8):  А –  линейная, Б – логарифмическая и В – обратно-логарифмическая.

Переменные  резисторы  имеют  разные  конструктивные  решения.  Но  все они должны обеспечивать вывод регулирующего стержня (вала)  сквозь корпус прибора. Принцип устройства переменных резисторов и функциональный прототип (реостат) представлены на рисунках 1.9а, 1.9б.

а) – принцип устройства переменных резисторов;

б) – функциональный прототип (реостат);

в) – и) – отличия переменных резисторов по способу крепления в приборе с помощью гайки и резьбы на корпусе прибора;

к)  –  н)  –  отличия переменных резисторов по способу впаивания в печатную плату и дополнительному закреплению также с помощью накидной гайки;

п)  –  переменный  резистор  как  конструктивная  имитация  реостата  при впаивании в плату.

Рисунок 1.9 – Конструктивные виды переменных резисторов

Конструктивные отличия связаны со способом крепления переменных резисторов в приборе:

  • одни крепятся с помощью гайки и резьбы на корпусе прибора, связь с электрической  схемой  реализуется  с  помощью  навесных  проводников  (представлены на рисунках 1.9в … 1.9и);
  • другие  впаиваются  в  печатную  плату  и  дополнительно  закрепляются также с помощью накидной гайки (представлены на рисунках 1.9к … 1.9н);
  • третьи впаиваются в плату и конструктивно имитируют реостат (представлены на рисунке 1.9п), в котором изменение сопротивления осуществляется не вращением вала, а поступательным движением движка, выводимым наружу.

Другие  возможные  отличия  –  тип  резистивного  материала:  провод  или слой износоустойчивого проводника.

Примечание   –   Обычно  регулировка  сопротивления  осуществляется  по  линейному закону: равномерное перемещение якоря (движка) приводит к равномерному изменению сопротивления.

Для регулировки громкости в аудиоусилителях осуществляется регулировка по логарифмическому закону. В наших устройствах второй способ не применяется.

Характеристики переменных резисторов.

Характеристики аналогичны характеристикам постоянных резисторов:

  • номинальное сопротивление,  номинальная мощность, предельное рабочее напряжение, ТКС, конструктивные особенности и габаритные размеры. Но есть и специфические параметры:
  • диапазон  изменения  (регулирования)  и  минимальное  устанавливаемое значение;
  • точность установки сопротивления;
  • гарантированное число полных оборотов без изменения характеристик и др.

В  качестве  примера  рассмотрим  общий  вид  и  основные  характеристики регулировочного  резистора  типа  PTD901-2015K-B103,  которые  приведены  на рисунке 1.10.

Схемы подключения переменных резисторов

Различают два способа подключения переменных резисторов: реостатное и потенциометрическое (показано на рисунке 1.11).

Виды

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:

МатериалОсобенности, где используется
Никель-хром (нихром, NiCr)в тонкоплёночных, которые устойчивы к высокой влажности (moisture-resistant)
Нитрид дитантала (Ta2N).TCR составляет 25 ppm/0С (-55…+1250С);
Диоксид рутения (RuO2)в толстоплёночных
Рутенит свинца (Pb2Ru2O6)в толстоплёночных
Рутенит висмута (Bi2Ru2O7)в толстоплёночных
Диоксиды рутения, легированные ванадием (Ru0,8V0,2O2, Ru0,9V0,1O2, Ru0,67V0,33O2)
Оксид свинца (PbO)
Висмут иридий (Bi2Ir2O7)
Сплав никеляВ низкоомных (0,03…10 Ом) тонкоплёночных изделиях

На рисунке ниже изображено, из чего состоит резистор:

По конструкции различают:

  • Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
  • Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.
  • Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

А также по назначению – общего и специального. Последние подразделяются на:

  • Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
  • Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
  • Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
  • Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).

Резистор в цепи

Детали с постоянным сопротивлениям в отечественной номенклатуре обозначаются прямоугольником, внутри которого находится определенное число черт, положение которых соответствует определенному номиналу. В зарубежных схемах их символ имеет зигзагообразную форму.

Переменные варианты отличаются направляющейся к прямоугольнику сверху линией со стрелой. Она демонстрирует опцию регуляции сопротивления. Иногда выводы элемента нумеруют цифрами.

Фоторезистор иллюстрируется прямоугольной фигурой, заключенной в круг, к которой направляется пара стрел, обозначающих световые лучи. Остальные полупроводниковые изделия символизируются зачеркнутым косой чертой прямоугольником. Буква показывает, от какого параметра зависит сопротивление (t – температура, U – напряжение и так далее).

Советуем изучить Инструмент для обжима коннекторов rj 45

Важно! Несколько резисторных компонентов могут быть объединены в цепь параллельно или последовательно. В первом случае будет справедливым выражение: 1/R = 1/R1+ 1/R2 + … 1/Rn. Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом

Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов

Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом. Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов.

Основные параметры ПР

Как любой элемент радиотехнических и электронных технологий, потенциометр имеет свои физические и электрические характеристики. К ним относятся следующие пункты:

  • Rном – номинальное сопротивление (полное), Ом;
  • Pном – номинальная мощность, Вт;
  • Rмин – минимальное значение сопротивления, Ом;
  • функциональный вид изменения сопротивления;
  • стойкость к износу;
  • величина шума при регулировке;
  • габаритные размеры.

Резистор — что это такое и для чего нужен

Цена и особенности эксплуатации при влиянии различных внешних факторов также относятся к характеристикам пассивного резистивного двухполюсника.

Номинальное сопротивление

Что касается маркировки переменного резистора, на его корпус наносится цифра величины номинального сопротивления, без указания допустимого отклонения (±30%).

Внимание! Стандартный ряд Rном для российских деталей (по ГОСТ 10318-74) – 1,0; 2,2; 3,3; 4,7 Ом (кОм, Мом). Для импортных элементов – 1,0; 2,0; 3,0; 5.0 Ом (кОм, Мом)

Точные данные для отдельных марок можно уточнить в справочнике.

Сопротивление между выводами 1 и 3 называется полным или номинальным.

Маркировка на корпусе

Форма функциональной характеристики

Изменение R между выводами (средним и крайним) может происходить по разному закону. Это носит название функциональной характеристики (ФК). Она может иметь следующие формы:

  • линейную – R меняется прямо пропорционально перемещению бегунка;
  • нелинейную – изменения происходят по заданному порядку.

Выделяют три формы изменения R, которые можно считать основными:

  • линейная – А;
  • логарифмическая – Б;
  • показательная (обратно логарифмическая) – В.

Для каждой из них выведен график, который начертан с учётом угла поворота движка по часовой стрелке.

Графики функциональных характеристик

Элементы, меняющие сопротивление по линейному закону А, употребляются в делителях напряжения. Генераторы звуковой частоты (ГЗЧ) в свою схему включают потенциометры, использующие функциональную характеристику Б. Резисторы с изменяющимся сопротивлением, применимые в аппаратуре для звуковоспроизведения, работают по закону В.

К сведению. Чтобы получить необходимую ФК, меняют компоненты или величину слоя у резистивной плёнки, а в проволочных конструкциях – варьируют шаг намотки или выполняют форму каркаса с разной шириной.

Небольшой срок службы потенциометров связан с нарушением плотности контакта между ползунком и дорожкой (проволокой), что сказывается на качестве работы аппаратуры.

Обозначение на схеме

На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:

  • одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
  • одна косая линия говорит о мощности в 0,25 Вт;
  • две косых — 0,125 Вт;
  • три косых — 0,05 Вт.

Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:

  • постоянный резистор обозначается только прямоугольником;
  • регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
  • переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
  • подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
  • подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
  • термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
  • варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
  • фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.

Классификация резисторов

Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.

По типу резистивного материала

Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.

Конструкция полупроводника

Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:

  • металлоокисные;
  • металлизированные;
  • бороуглеродистые;
  • металлодиэлектрические;
  • углеродистые.

Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.

По назначению сопротивления

Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:

  • высокочастотными;
  • высоковольтными;
  • высокомегаомными;
  • прецизионными.

Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.

Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.

По количеству контактов

В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.

Разное количество контактов на элементах

Другие

Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.

Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:

  • варисторы;
  • магниторезисторы;
  • фоторезисторы;
  • позисторы;
  • тензорезисторы;
  • терморезисторы.

Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.

Система обозначений

Все перечисленные выше особенности параметров обычно отражаются в полном наименовании потенциометра в технической или товаро-производственной документации.

Ниже приведена система обозначений переменных резисторов по действующим ТУ.

Рис. 2.2. Система обозначений переменных резисторов отечественных фирм.

Первый элемент (буквы и цифры)

обозначает тип резистора и вариант конструкторского исполнения.

Второй элемент (буква)

обозначает допустимую мощность рассеяния в ваттах.

Третий элемент (цифры и буквы)

обозначает номинальное сопротивление.

Четвертый элемент (цифры)

обозначает допустимое отклонение сопротивления от номинала (в %).

Пятый элемент (буква)

обозначает зависимость сопротивления переменного резистора от положения подвижного контакта.

Шестой элемент (цифры и буквы)

обозначает вид выступающей части вала.

Седьмой элемент (цифры)

обозначает размер выступающей части вала.

Восьмой элемент (буква)

обозначает документ на поставку.

Ниже рассмотрим систему обозначений зарубежных резисторов на примере фирмы Bourns (рис. 2.3).

Первый элемент (буквы и цифры)

обозначает серию (модель) переменного резистора.

Второй элемент (цифра)

обозначает количество секций (групп) переменных резисторов (если секция одна, то данный элемент отсутствует).

Третий элемент (цифра или буква)

обозначает расположение выводов и их форму (табл. 2.1.).

Четвертый элемент (буква)

обозначает наличие («S») или отсутствие («N») дополнительного выключателя (в обозначении некоторых серий резисторов может отсутствовать).

Пятый элемент (цифры)

обозначает длину вала в мм.

Шестой элемент (цифры)

обозначает код номинального сопротивления

Рис. 2.3. Система обозначений переменных резисторов фирмы Bourns.

Расположение выводов резисторов относительно корпуса

Резистор (лат. resisto – сопротивляюсь) – один из наиболее распространенных радиоэлементов, а переменный резистор в простом транзисторном приемнике исчисляется до нескольких десятков, а в современном телевизоре – до нескольких сотен.

Переменный резистор – это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Резисторы выступают как нагрузочные и токоограничительные элементы, делители напряжения, добавочные сопротивления и шунты в измерительных цепях и т. д. Основная задача резистора – оказывать сопротивление, то есть перекрывать протекание электротока. Сопротивление измеряют в омах, килоомах (1000 Ом) и мегаомах (1 000000 Ом).

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторыРис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I  – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Рис. 5. Принцип работы

Виды резисторов

Самый распространенный вид резисторов, это постоянные резисторы, которые используются преимущественно в электронике. На схеме постоянные резисторы обозначаются следующим образом, смотрите фото.

Постоянный резистор — обозначение на схеме

Второй тип, это переменные резисторы, которые способны изменять своё сопротивление. Конструкция переменных резисторов устроена, таким образом, что имеет вращающийся элемент под отвертку или колпачок. Вращая данный элемент можно плавно изменять сопротивление переменного резистора.

Переменный резистор — обозначение на схеме

Подстроечные резисторы, как уже было сказано ранее, чем-то напоминают переменные резисторы. Однако в отличие от них они могут быть реостатами или потенциометрами, иметь меньшие размеры и совершенно иные элементы управления, например, под шестигранник, а не отвертку.

Подстроечные резисторы — схема обозначения

Варисторы, также являются разновидностью полупроводниковых резисторов.

Варисторы — обозначение, схема

Варисторы нужны для того, чтобы изменять нелинейно напряжение. Варисторы применяются для защиты от скачков напряжения и обозначаются они на плате следующим образом, смотрите фото.

Термисторы и фоторезисторы

Также к разновидностям резисторов относятся и фоторезисторы с термисторами. Работа этих видов резисторов происходит за счет тепла и света, соответственно.

Термистор — обозначение на схеме

  • Фоторезистор способен менять своё сопротивление при воздействии на него света.
  • Термистор способен менять своё сопротивление при воздействии на него температуры.

Фоторезистор — обозначение на схемах

И фоторезисторы, и термисторы — получили широчайшее применение на сегодняшний день. Так, например, фоторезисторы активно применяются в датчиках освещения, фото и видеотехнике, а также, в различных других приборах.

Термисторы получили заслуженное применение в устройствах, которые позволяют автоматизировать процесс работы. Например, в датчике теплого пола, также применяется термистор. При изменении температуры, термистор включает или отключает подогрев теплого пола.

Маркировка

Существует определенный принцип выделения основных качеств резисторов. Его широко применяют во всем мире.

Резистор – это (фото представлено ниже) небольшая деталь, имеющая цветовую или знаковую маркировку.

В последнее время многие производители переходят на другой тип маркировки – цветовой. Он проще в нанесении при больших объемах производства.

Самые точные резисторы имеют до 6 цветов на корпусе. Две первые полосы соответствуют номиналу напряжения.

Рассмотрев, что собой представляет элемент сопротивления в схеме приборов различной техники, следует сделать вывод, что резистор – это оборудование, обеспечивающее всю систему необходимой для работы силой тока.

Особенности применения резисторов в схемах

Резисторы можно соединять последовательно и параллельно.

[Сопротивление последовательно соединенных резисторов] = [Сопротивление R1] + [Сопротивление R2]

[Сопротивление параллельно соединенных резисторов] = 1 / (1 / [Сопротивление R1] + 1 / [Сопротивление R2])

На рисунке приведены типовые схемы на резисторах. (А) – ‘Преобразователь тока в напряжение’. Напряжение на резисторе равно его сопротивлению, умноженному на ток. (Б) – ‘Преобразователь напряжения в ток’. Ток через резистор равен напряжению на нем, деленному на его сопротивление. (В), (Г) – Делитель напряжения. Напряжение на выходе делителя равно напряжению на входе, умноженному на сопротивление нижнего резистора, деленное на сумму сопротивлений обоих резисторов. Схема (Г) – регулируемый делитель, образуемый двумя половинками переменного резистора. С помощью него можно механически регулировать уровень выходного напряжения. (Д) – источник тока. Резистор хорошо справляется с функцией источника тока, если к нему приложено фиксированное напряжение. Да, в изображенной схеме и верхний, и нижний резисторы являются источниками тока, а вовсе не делителем напряжения, как может показаться на первый взгляд. Дело в том, что падение напряжения между базой и эмиттером транзистора мало зависит от тока. Так что и нижний резистор и верхний работают в условиях фиксированного напряжения. Напряжение на нижнем резисторе равно напряжению насыщения база – эмиттер, а напряжение на верхнем резисторе равно напряжению питания минус напряжение насыщения база – эмиттер.

(читать дальше…) :: (в начало статьи)

 1  2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Проверка резисторов, конденсаторов, диодов, выпрямительных мостов. Про…
Как проверить резистор, конденсатор, диод, мост. Методика испытаний….

Делитель напряжения. Схема, расчет, формула. Рассчитать. Применение. О…
Делитель напряжения. Онлайн расчет. Применение на примере осциллографа…

Онлайн расчет схемы защиты (активного ограничителя) силового ключа от …
Проектирование защитной схемы силового транзистора импульсного источника питания…

Электронный цифровой термометр своими руками. Схема, конструкция, опис…
Как сделать простой цифровой измеритель температуры…

Перемножение сигналов. Умножение, деление напряжения. Перемножить, раз…
Схемы для перемножения сигналов, деления друг на друга, извлечения корня, возвед…

Понижающий импульсный преобразователь напряжения. Выбор силового ключа…
Как сконструировать понижающий импульсный источник питания. Шаг 2. Как выбрать м…

Прямоходовый импульсный преобразователь напряжения, источник питания


Как выбрать частоту работы контроллера и скважность для однотактного прямоходово..

Типы включения и примеры использования

Основные типы включения это последовательные и параллельные соединения.

Последовательно сопротивление рассчитывается просто. Достаточно все сложить.

При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.

Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.

Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.

Рассмотрим пример усилителя на транзисторе.

Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.

Это необходимо для того, чтобы он работал без искажений.

Параллельное включение

При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.

В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.

Формулы расчета

Для двух резисторов:

Для более:

Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.

Его сопротивление рассчитывается по формуле:

Эквивалентное соединение

В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.

В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.

А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.

Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.

Цветовая маркировка резисторов с проволочными выводами

Для резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра.

Таблица расшифровки цветовых колец

Цвет Число Десятичный множитель Класс точности, % Температурный коэффициент сопротивления % отказов
Черный 1*100
Коричневый 1 1*101 1 100 1
Красный 2 1*102 2 50 0,1
Оранжевый 3 1*103 15 0,01
Желтый 4 1*104 25 0,001
Зеленый 5 1*105 0,5
Синий 6 1*106 0,25 10
Фиолетовый 7 1*107 0,1 5
Серый 8 1*108 0,05
Белый 9 1*109 1
Серебристый 1*10-2 10
Золотой 1*10-1 5

В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов.

В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий