Подробно о люминесцентных светильниках

Какие бывают светодиоды?

Светодиодом называют многослойный полупроводник, который способствует преобразованию электроэнергии в свет. Если изменить его состав, то можно добиться цветного свечения. Изготавливается этот элемент на основе чипа – кристалла с местом подсоединения проводки питания.

Таблица 2. Разновидности светодиодов по способу сборки чипов

ВидОписание
DIPПредставляет собой кристалл и расположенное в верхней части увеличительное стекло, куда подсоединяются два проводника. Это распространенный тип, который часто используется для подсветки витрин, вывесок и прочих предметов.
«Пиранья»Эта конструкция имеет сходство с предыдущим вариантом, только здесь уже имеется четыре проводника, что позволяет добиться надежности и лучшего отвода тепла из внутренней части. Чаще всего такие чипы устанавливают в автомобильных лампочках.
SMD-светодиодНаходится на поверхностной части конструкции, что позволяет сократить габариты, улучшить тепловой отвод. При этом существует множество вариантов таких чипов. Применяют их в любых источниках света, независимо от назначения.
СОВ-технологияЗдесь чип встраивают в плату. Такое строение позволяет осуществить защиту контактов, поэтому они не окисляются при сильном нагревании — все это лучшим образом сказывается на яркости свечения. В случае неисправности светодиода, придется выполнить полную замену. Здесь уже не получится отпаять чип.

Из отрицательных сторон светодиодов следует отметить минимальный размер. Поэтому, чтобы создать обширное свечение, требуется использовать много таких источников, соединенных между собой. К тому же, кристалл через некоторое время изнашивается, поэтому сокращается яркость лампочек. Тем не менее, если это высококачественное изделие, то лампа долго остается яркой.

Подключение ЭПРА

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

  1. Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
  2. Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
  3. Соединяем его проводами с гнездами ламп
  4. Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.

Достоинства и недостатки люминесцентных источников света

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

Классифицирование ЛЛ

Сегодняшний рынок может представить потенциальному покупателю множество вариаций источников люминесцентного света. Стоит отметить, что их некоторые модели имеют конкретное прикладное назначение, например, обеззараживающие лампы для больниц. Первоначально, указанные изделия выполнялись исключительно в линейной форме, но вскоре появились и компактные образцы. Между собой они отличаются лишь размерами и формой корпуса.

Линейные формы

Такие ртутные лампы имеют прямую, кольцевую или U–образную форму корпуса. Их возможно подразделять по длине или диаметру колбы. Соответственно, чем больше корпус изделия, тем мощнее лампа. Для линейных моделей применяется цоколь G13, а колбы маркируется литерой «Т» с цифрами 4,5,8,10 и 12 которые означают ее диаметр в дюймах (приведенные типоразмеры являются традиционными). Главное отличие линейных образцов заключается в том, что они обладают встроенными в края электродами, кои направлены внутрь колбы. Снаружи же установлены цоколи, обладающие контактными штырями, посредством которых осуществляется подключение лампы в электроцепь. Данные модели зачастую устанавливаются в общественных местах, офисах и торговых центрах. Экономия их применения ниже на 15% от аналогичных ламп накаливания.

Компактные формы

Эти модели возможно подразделить по следующим отличительным признакам:

  • Размер и тип цоколя;
  • Размер и форма колбы.

У компактных изделий чаще всего присутствует изогнутая форма колбы, которая, как бы, сложена в спираль либо иную форму, благодаря чему и удается добиться малых габаритов. Они считаются очень удобными и практичными в плане бытового применения. Например, найти компактную модель с цоколем на Е27 и заменить ею стандартную лампу накаливания не составит никакого труда.  Тем более, что цоколи могут быть выполнены в своей ипостаси, например, от G11 до G23. Необходимо заметить, что сейчас развитие компактных ламп идет полным ходом и они почти полностью вытеснили модели накаливания из сферы применения в светильниках бра или люстрах, детских ночниках, что удалось достичь за счет показателей энергоэффективности. Одновременно, параметр их цветопередачи считается наилучшим, а это является прямым следствием наличия покрытия люминофора в несколько слове. В итоге результат по ретрансляции цвета превосходит все ожидания.

Особые формы

Эти лампы отличаются от стандартных люминесцентных тем, что имеют специальный спектр излучения. К таковым относятся следующие лампы:

  • Дневного освещения, предназначенные для использования в помещениях, где требуется особая цветопередача (например, галереи, типографии, музеи и т.п.).
  • Максимально имитирующие дневной солнечный свет – они используются в медицинских учреждениях для целей светотерапии.
  • Для усиления цветения растений – они выдают повышенный диапазон красного и синего цветов, кои оказывают позитивное влияние на процессе фотобиологии (например, используются в домашних теплицах).
  • Для подсветки декоративных растений – здесь упор делается не на содействие фотосинтезу, а на хорошую освещенность растительного объекта.
  • Для освещения аквариумов – в них преобладает ультрафиолет и усилен синий спектр, что помогает ускорить процесс роста водорослей, а отдельным видам растений позволяет флуоресцировать.
  • Для освещения птичьих вольеров – в таких моделях усилены свойства ближнего ультрафиолета, который создает условия и тепла и освещенности максимально приближенным к натуральным.
  • Для создания смены цветовых эффектов – данные образцы используют всю цветовую палитру и применяются в ночных- клубах и иных увеселительных заведениях. Подобной световой эффект становится возможным благодаря нанесению изнутри на колбу специального состава люминофора, который способен изменять оттенки.
  • Для соляриев – при их помощи человек получает ровный искусственный загар кожи.
  • Для лабораторных исследований – это переносные модели, корпус которых выполнен из черного стекла.
  • Для озонирования и стерилизации – используются в медицинских учреждениях (гигиенические, бактерицидные, ртутно-кварцевые).

Критерии выбора

При покупке стоит руководствоваться следующими критериями:

  • размер, который должен подходить вашему источнику освещения и его патрону;
  • мощность, оптимальный вариант 15-25 Вт;
  • срок годности, лучше выбрать с максимальным значением;
  • цветовая температура, должна соответствовать интерьерному решению или предназначению помещения.
  • стоимость, самый дешевый вариант – U-образные.

В случае, если лампа разбилась, необходимо быстро отреагировать и собрать частички ртути в отдельную емкость и герметично закрыть, затем обработать этот участок, используя марганцовый раствор, и подвергнуть помещение проветриванию.

Достоинства люминесцентных ламп

Люминесцентные двухламповые потолочные модели 2х36 и других габаритов имеются одинаковые достоинства, которые и обеспечили им такую популярность и широкое применение. К преимуществам использования данной осветительной продукции можно отнести следующие моменты:

высокая светоотдача. Стоит отметить, что освещение, которая создаёт такая лампа в 20 Вт равносильно световому потоку, которые исходит от лампочки накаливания в 100 Вт;

Светоотдача разных лампочек

  • спектр света будет аналогичным естественному освещению;
  • высокий КПД;
  • световой поток, исходящий от лампы характеризуется рассеянностью. Поэтому такие приборы часто используются для создания общего освещения в помещении;
  • срок службы составляет порядка 20000 часов. Поэтому он прослужит без замены источника света примерно 6 лет. Если сравнивать с лампочками накаливания, то люминесцентные источники света придется менять в 6 раз реже.

Отдельно стоит отметить, что в продаже на сегодняшний день имеются влагозащищенные модели (2х36 и другие). Узнать, влагозащищенные ли светильники можно по специальной маркировке – IP. Влагозащищенные лампы делятся по данному параметру на слабозащищенные (IP54) и сильно влагозащищенные (IP65/64). Кроме этого есть приборы, имеют низкий класс влагозащищенности IP44. В связи с этим для помещений, где имеется повышенная влажность необходимо использовать только влагозащищенные лампы, имеющие маркировку IP65 или IP54.

Влагостойкий люминесцентный светильник

При этом необходимо знать, что маркировка IP65, которую имеют влагозащищенные модели, говорит о том, что лампа выдержит длительный контакт в водой и грязью. В то же время, маркировка IP54 свидетельствует о том, что такой контакт должен быть непродолжительным. Как видим, модели с маркировкой IP65 более выгодны, но стоят несколько дороже остальных вариантов. Мы разобрались со всеми преимуществами использования таких приборов для освещения различных помещений. Вот мы и подошли к недостаткам, которые не позволили этим светильникам стать лучшими.

Запуск электромагнитного балласта

В классической схеме пуска лампы с электромагнитным балластом используется стартер (пускатель), который представляет собой миниатюрную газоразрядную неоновую лампочку с парой металлических электродов. Один из электродов жесткий и неподвижный, а другой – биметаллический, изгибающийся. Следовательно, в исходном состоянии электроды разомкнуты.

Стартер активируется параллельно с лампой. В момент включения, к электродам стартера и лампы поступает полное напряжение. Это связано с тем, что ток через лампу не идет, а падение напряжения на пускателе равно нулю.

Так как электроды лампы холодные, напряжения сети не хватает для ее зажигания. Благодаря возникновению разряда в пускателе через него и лампу проходит ток, которого достаточно для электродов пускателя, но недостаточно для разогрева лампы. В результате ток в общей цепи растет и разогревает электроды лампы. Когда это происходит, электроды пускателя охлаждаются и размыкаются. Благодаря мгновенному разрыву цепи возникает пик напряжения на дросселе, который и стимулирует зажигание лампы. Электроды тем временем уже достаточно разогреты.

Во время горения напряжение в лампе составляет примерно половину от сетевого, так же, как и в пускателе. Причина в том, что проходя через дроссель, оно падает, что позволяет устранить повторное срабатывание пускателя.

При зажигании, пускатель может срабатывать несколько раз. Это связано с отклонениями его характеристик от характеристик лампы. В некоторых случаях стартер начинает работать циклически. Если это происходит, то лампа постоянно гаснет и снова вспыхивает. При погасании можно созерцать свечение накаленных током катодов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА . Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Дроссель для люминесцентных лампСтартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Проверка работоспособности


Прозвонка электродов мультиметром

Выполнить проверку собранной системы можно с помощью тестера, который проверяет нити накала. Его допустимое сопротивление должно составлять 10 Ом.

Если тестирующее устройство показало бесконечное сопротивление, лампочка подходит только для использования в режиме холодного запуска. Также бесконечность может показываться при неисправности источника света. Нормальное сопротивление, которое должен показывать тестер, достигает несколько сотен Ом. Это связано с тем, что в обычном состоянии контакты стартера находятся в разомкнутом виде. При этом конденсатор не пропускает постоянный ток.

Если коснуться щупами мультиметра дроссельных выводов, сопротивление будет постепенно падать до постоянного значения в несколько десятков Ом.

Точное значение определить нельзя при помощи обычного тестера. Но на некоторых приборах есть функция измерения индуктивности. Тогда по данным ЭмПРА можно проверить значения. В случае их несовпадения можно судить о проблемах с прибором.

https://youtube.com/watch?v=fShMPV3tTy8

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.


Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».


В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического цоколя, на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит дроссель или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется стартером. Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Принцип действия

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

  1. При подаче питания ток, проходя через ПРА, проходит через контакты стартера по вольфрамовым спиралям, раскаляя их и далее уходит в сторону нуля
  2. Стартер оснащается парой контактов: подвижным и неподвижным. При поступлении тока подвижный контакт (биметаллический), нагреваясь, изменяет свою форму и соединяется с первым
  3. При этом сила тока тут же значительно увеличивается до предела, ограничиваемого дросселем. Происходит разогревание электродов
  4. Пластина стартера, напротив, начинает остывать и рассоединяет контакты. В этот момент происходит резкий скачек напряжения и пробивка электронами газа. При превращении ртути в пар источник света переходит в рабочий режим
  5. Стартер в процессе уже не участвует – его контакты разомкнуты.

Как согнуть трубу без трубогиба: простой метод изгиба трубы без заломов

Приступаем к работе

Сделать такой осветительный прибор своими руками вы можете любой конструкции. Но лучше выбрать вариант со съемной верхней крышкой, чем отдать предпочтение монолитной конструкции. Так, в случае всего, проводить ремонт будет удобнее. Здесь процесс изготовления предполагает проведение следующих действий:

  • делаем по периметру рамку. Ее лучше изготовить двухслойной. Верхний слой будет носить декоративный характер;
  • сбираем электросистему лампы по схеме;

Схема сборки

убедитесь в том, что все контакты надежно изолированы

В ситуации с близким расположением воды это жизненно важно. Для этого на концы ламп следует надеть герметичные наконечники;

  • прикрепляем всю электросхему к пластиковой крышке светильника;
  • далее с помощью клея фиксируем на нижней стороне прибора прямоугольник из оргстекла;
  • сверху надеваем пластиковую крышку, на которой установлены люминесцентные лампы. Крышка должна легко сниматься, чтобы можно было провести ремонт прибора.

Почти готовое изделие

Если крышка имеет черный цвет, то ее необходимо оклеить белой светоотражающей пленкой. Для белого пластика такие манипуляции не проводятся. В местах состыковки светильника с аквариумом необходимо пройтись герметиком, чтобы предотвратить проникновение внутрь осветительного прибора конденсата. Но перед нанесением герметика не забудьте обезжирить стекло.

Варианты подключения люминесцентных ламп

Строго говоря, вариантов как выбрать, установить и подключить люминесцентную лампу немного. Эти параметры задаёт схема люминесцентной лампы, а также компоновка осветительного прибора

Обратите внимание – мы в этой статье не рассматриваем характеристики , нас больше интересует вопрос, как подключить люминесцентную лампу правильно. Исходя из этой задачи, мы имеем в виду что:

  • Нагрузка на электропроводку должна быть минимальна;
  • Условия эксплуатации требуют именно такой лампы (об этом ниже);
  • Параметры сети стабильны (плавная регулировка диммерами невозможна, а перепады напряжения это постоянная замена сгоревших люминесцентных ламп);
  • Требования к освещению помещения не позволяют использовать лампы накаливания, или это прямая экономия на электроэнергии;
  • Каждая лампа это отдельный прибор, снабженный демпфирующим дросселем, балластом и стартёром, причём использовать даже в промышленных масштабах мощных дроссель на 10-ть ламп невозможно.

Из этого вытекает, что каждая люминесцентная лампа, применяемая нами в быту, должна точно занимать своё место. Причём в отличие от иных , это место которое снабжено:

  • Специальным цоколем (за исключением адаптированных к винтовым цоколям энергосберегающих ламп);
  • Специальным «глушителем» света (абажуром). Как правило, матовым стеклом, которое позволяет убрать эффект «мерцания»;
  • Доступом. Когда замена люминесцентных ламп и элементов прибора (обычно стартёров) делается быстро, без особых трудозатрат.

Сам процесс подключения должен выглядеть таким образом. Мы берём фазу, на которую вешаем контакт лампы. Нейтральный провод присоединяем к дросселю, от которого замыкаем второй контакт в лампе. При подаче напряжения лампа будет «моргать», примерно раза три-четыре в минуту. Это значит, что ток пробоя достаточен.

Для плавного пуска лампы нужен стартёр, он же балласт, он же ключевой элемент Пусковой Регулирующей Аппаратуры (ПРА). Сегодня более применимы Электронные ПРА, ЭПРА. Главная задача балласта – балансировать нагрузку. Иначе говоря, не позволять дросселю «плеваться зарядом», что приводит к вспышкам, а не спокойному горению лампы. Ещё раз посмотрите на схему:

Балласт висит над контактами лампы, балансируя разряды внутри колбы. Название не случайно, стартёр не только запускает непрерывный разряд внутри лампы, но и не позволяет этому разряду выйти за рамки внутри колбы. Случаев взрыва люминесцентных ламп практически нет, но «чёрная трубка» это скорее правило, а не исключение. Тот самый случай, когда люминофор выгорел из-за переразряда. Обычно так происходит, когда стартёр выходит из строя после того, как лампа зажглась.

Подключение люминесцентных ламп делаем последовательно, следя за тем, чтобы и дроссель и стартёр работали каждый на свою лампу. При подключении готового светильника (в котором много ламп) убедимся в том, что стартёров столько, сколько ламп, иначе выход из строя одного стартёра может выключить весь осветительный прибор.

Мы понимаем, что этот тип освещения, не боится влаги, перепадов температур и безопасен как источник пожара (кроме ), поэтому в аквариумах другие лампы не используют

, а там влажность в зоне светильника почти 100%.

Ещё мы помним, что ЛЛ – это источник яда и заражения

. Поэтому не будем их устанавливать там, где они могут быть физически разрушены. Что ещё осталось узнать про люминесцентные лампы, о чём предпочитают не писать в сети?

Поделитесь в социальных сетях:FacebookX
Напишите комментарий