Для чего нужен дроссель в люминесцентных лампах? (Схемы подключения)

Роль дросселя в схемах пускорегулирующих устройств

Основная задача дросселя для люминесцентных ламп заключается в образовании импульса, способного пробить среду, наполненную газом. Кроме того, он должен поддерживать установленное значение тока и напряжения на контактах и во всей схеме работающего светильника. Принцип действия этого устройства связан с работой катушки индуктивности, извлекающей энергию из сети и превращающей ее в магнитное поле.

Точно такая же катушка входит в устройство дросселя. При замыкании контактов происходит постепенный рост тока на катушке, а после размыкания он на короткое время многократно возрастает, а потом начинает плавно снижаться. Дроссель-трансформатор, применяемый в люминесцентных светильниках, по своей сути является такой же катушкой, внутри которой установлен ферромагнитный сердечник. Он подходит лишь для электрических цепей, где применяется электромагнитная пускорегулирующая аппаратура.

Теперь рассмотрим не только, для чего нужен дроссель, но и как он работает.

При подаче напряжения ток вначале попадает на дроссель-трансформатор, затем он поступает к первой паре электродов лампы, далее – на стартер и на вторую пару электродов, после чего возвращается в сеть. Этого тока недостаточно для того чтобы зажечь лампу, однако, он способен разогреть электроды стартера и создать тлеющий разряд. Он обладает напряжением, более низким чем в сети, но превышающим это значение у работающего светильника.

После разогрева в стартере биметаллического электрода, происходит его замыкание со вторым электродом, после чего в схеме происходит стремительный скачок тока и электроды в торцах лампы начинают разогреваться. Одновременно, под действием самоиндукции, в дросселе размыкается цепь, что приводит к скачку напряжения. К нему прибавляется входное напряжение, и в совокупности они создают условия, необходимые для запуска лампы.

К этому времени электроды разогреваются до температуры, обеспечивающей начало эмиссии, а в самом дросселе образуется высоковольтный импульс. Тлеющий разряд вначале появляется в аргоне, а после перехода ртути в состояние пара он продолжается уже в ртутных парах, после чего схема начинает стабильно работать в обычном режиме. Напряжение на дросселе падает и соответственно уменьшается в самой лампе. Таким образом, обеспечивается защита от возникновения повторного разряда.

Непосредственное включение света происходит при совпадении фаз напряжения и импульса дросселя. Чаще всего они не совпадают по времени, поэтому стартер срабатывает насколько раз перед входом лампы в рабочий режим. В этот момент она начинает мигать, а в стартере возникают радиопомехи, подавляемые конденсатором, установленным в общем корпусе.

Таким образом, кроме зажигания люминесцентной лампы, дроссель-трансформатор ограничивает возрастающий ток до предела, после которого осветительный прибор может выйти из строя.

Как правильно подключать лампу ДРЛ 400

Если хочется подключить ДРЛ в качестве лампы без использования специального дросселя, то придется прибегать к другим методам. Наиболее простой способ — приобретение специальной лапочки ДРЛ, которая будет нормально работать и без дросселя. Такие образцы используют специальную спираль, которая работает в качестве стабилизатора.

Важно! Если использовать обычную ДРЛ лампу без дросселя, то она моментально сгорит, так как напряжение для ее пуска может быть очень большим. Убрать дроссель можно добавлением нескольких конденсаторов в общую конструкцию

Важно правильно рассчитывать выдаваемый ими ток.

При всех своих недостатках ДРЛ — хорошая лампа для определенных задач

Таким образом, была рассмотрена лампочка ДРЛ 400, которая снискала свое широкое применение в производственных помещениях, на улицах и в немноголюдных местах. Используя ее именно в этих условиях, можно значительно выиграть.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Три дросселя.

Включение приборов со сгоревшими спиралями

Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора:

Схема включения ЛДС со сгоревшими спиралями

Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня.

Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника

В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана.

Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В:

Включение двух ЛДС со сгоревшими спиралями

Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Проверка работоспособности системы

После подключения люминесцентной лампы следует убедиться в ее работоспособности и в исправности пускорегулирующих устройств. Для проведения испытаний понадобится тестер, с помощью которого проверяют катодные нити накала. Допустимый уровень сопротивления — 10 Ом.

Если тестер определил сопротивление как бесконечное, необязательно выбрасывать лампочку. Данный источник света еще сохраняет функциональность, но использовать его нужно в режиме холодного запуска. В обычном состоянии контакты стартера разомкнуты, а его конденсатор не пропускает постоянный ток. Иными словами, прозвон должен показывать очень высокое сопротивление, которое иной раз достигает сотен Ом.

После прикосновения щупами омметра дроссельных выводов сопротивление постепенно снижается до постоянной величины, присущей обмотке (несколько десятков Ом).

Достоверно определить межвитковое замыкание в дроссельной обмотке, используя обычный омметр, не получится. Однако если в приборе есть функция замера индуктивности и данные по ЭмПРА, несоответствие значений укажет на наличие проблемы.

Принцип работы

Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .


Типичная схема подключения

На схеме обозначены:

  • EL – лампа газоразрядного (люминесцентного) типа;
  • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
  • LL –дроссель (электромагнитный);
  • спирали лампы (1 и 2);
  • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт)Емкость конденсатора (мкФ)
154,50
184,50
304,50
364,50
587,00

Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор, это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

  • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
  • существенно сокращается ресурс оборудования.

Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

  • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
  • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
  • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
  • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
  • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
  • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
  • контакты стартера остывают и размыкаются.

Преимущества и недостатки

Главным плюсом люминесцентных устройств будет высокая светоотдача и отличный уровень КПД. Они дают помещению хорошую яркость, которая не портит глаза, и исправно работают спустя долгие часы.

Различные цветовые температуры, похожие по оттенку на дневной свет, помогают выбрать необходимый светильник под разнообразные задачи и для помещений любого предназначения.

Свет от таких ламп будет рассеянным. Мягкое, приятное для глаз сияние испускается не только от нити из вольфрама, но и от всего сосуда лампочки сразу.

Это позволяет применять люминесцентное освещение не только для подсветки, но и для зонирования помещения.

Срок службы люминесцентных устройств будет в диапазоне от 10000 до 20 000 часов либо до 4 лет.

Освещение для растений

Главным большим недостатком лампочек будет высокая чувствительность к температурным скачкам. Уже при температуре −15 градусов изделие будет плохо работать. При высокой жаре лампочки перестают включаться и могут сильно перегреться.

Что такое дроссель?

Деталь используется при составлении электроцепи для предотвращения нагрева и перегрузки. Катушка индуктивности задерживает влияние тока, при этом резкие перепады исключаются из-за закона самоиндукции. Так создается дополнительное напряжение.

Дроссель состоит всего из 4 элементов:

  • проволоки, которая закрепляется в изоляции;
  • сердечника, материал для него подбирают отталкиваясь от применения устройства;
  • заливочной массы, в которую входят вещества, не поддающиеся горению, так обеспечивается дополнительная изоляция;
  • корпуса, его делают из термоустойчивого материала.

Электронный дроссель похож на железный трансформатор, отличается он  обмоткой. Сердечник состоит из стали, а пластины располагаются так, чтобы они не соприкасались друг с другом. Индуктивность достигает 1Гн, катушка ограничивает резкие скачки тока в цепи. Если уровень снижается, то деталь поддерживает его на минимальных показателях, а при сильном повышении дроссель в устройстве ограничивает скачок. Элемент также используется для сглаживания, отделения определенных участков схемы, накапливания энергии и устранения помех.

Разбираясь в том, что такое дроссель, стоит уточнить, что его в основном ставят для сбора энергии и задержки тока в выбранном диапазоне. Некоторые виды люминесцентных ламп неспособны работать без такой детали. Это относится к уличным фонарям и домашним светильникам. Дроссель в контакте с ними выступает ограничителем, который передает электроды на лампу.

Созданные по этому принципу механизмы формируют напряжение, оно нужно для получения разряда. После этого загорается лампа. Процесс протекает настолько быстро, что напряжение создается всего через несколько долей секунды, без детали невозможна стабильная работа и включение предмета.

Электронный пускорегулирующий аппарат

Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку. Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы. К тому же в работе присутствовало мерцание по причине низких частот напряжения. При помощи электронного пускорегулирующего аппарата от этих неприятностей удалось избавиться. Необходимо разобраться, как действует ЭПРА.


Схема ЭПРА

Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 (на схеме ниже) напряжение сглаживается. Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4. При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.

После того как розжиг выполнен, показания сопротивления лампы снижаются, вместе с ними падает и напряжение до уровня, достаточного для поддержки свечения. Вся работа ЭПРА по запуску занимает меньше секунды. По такой схеме работают лампы дневного света без стартера.

Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.

Недостатки ПРА — анализируем особенности конструкции

У электромагнитных ПРА немало приверженцев. Люминесцентные светильники с этим устройством просты в использовании и стоят недорого. После покупки не требуется никакой дополнительной настройки. Лампа подключается к питанию и начинает работать. А «маленькие недостатки» хозяева ей прощают, так как ценят такие осветительные приборы, прежде всего, за бюджетную цену.

Но, если проанализировать качество работы лампы с дросселем, выясняется – экономия для домашнего бюджета с таким приобретением весьма сомнительная.

Подключают терморегулятор для инфракрасного обогревателя с целью контроля и поддержания в автоматическом режиме установленных пользователем температур. Порядок монтажа зависит от количества обогревательных приборов.

Для защиты постоянно включенного в сеть холодильника применяют стабилизаторы напряжения. О способах подключения другого бытового электроприбора — плиты — можно прочитать тут.

Дроссельный пусковой механизм очень чувствителен к нестабильности сети. Малейшее колебание напряжения тут же сказывается на лампе. Она начинает мерцать, раздражая зрение и потреблять больше электроэнергии. А ещё в этот момент явственно слышится характерное гудение.

При такой работе срок эксплуатации оказывается меньшим, чем был заявлен производителем изначально.

Не меньшее влияние на продолжительность службы оказывают и другие технические особенности конструкции:

  • При вспышках перед зажиганием лампы, происходящих из-за несинхронной с частотой сети работы дросселя, его изнашиваемость ускоряется в несколько раз.
  • Четверть мощности осветительного прибора расходуется на разогревание электромагнитного балласта для люминесцентных ламп, что помимо потерь электроэнергии повышает опасность возникновения пожара. Ведь греется стартер иногда до 100 и больше градусов.
  • Вышедший из строя конденсатор ПРА невозможно определить на глаз. Внешне всё выглядит как прежде, хотя коррекция коэффициента мощности в лампе уже не происходит.

В таком случае потребуются дополнительные знания — как проверить дроссель люминесцентной лампы.

Факт запрета Европейской комиссией двух классов ПРА из четырёх весьма красноречив. Класс D запрещён в 2004, C – в 2006 году. Сейчас на рынке можно встретить только класс B1 и В2. Это классы с пониженными потерями электроэнергии.

Конечно, каждый решает для себя сам, отдать ли предпочтение такой классике, как электромагнитный ПРА, или не пожалеть денег и найти ему альтернативу — электронный балласт для люминесцентной лампы. Без сомнения, в определённых случаях технология, отработанная в течение десятилетий, обеспечивает достаточную надёжность и является заслуженно востребованной.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Классификация и разновидности дросселей

Схема люминесцентных ламп включает в себя дроссель, выполняющий ограничивающую функцию и поэтому относящийся к балласту или дополнительной нагрузке. Поскольку в этом устройстве имеют место определенные потери мощности, то все они разделяются на категории в соответствии с уровнем этих потерь. Обычный уровень соответствует классу D, пониженный – классу С, особо низкий – классу В.

Одним из физических свойств дросселя в люминесцентных лампах, является сдвиг по фазам, образующийся между током и напряжением. Отставание тока от напряжения составляет величину, обозначаемую как cos φ. С ростом этого значения приборы становятся более экономичными и эффективными.

К основным типам дросселей можно отнести следующие:

  • Электромагнитные устройства, представляющие собой трансформатор, соединяемые с лампой в последовательную цепь и работающие совместно со стартером. Они отличаются простой конструкцией и низкой ценой. Серьезными недостатками в работе считаются мерцание и шум при пуске и эксплуатации, длительное включение, необходимость использования конденсатора, снижающего потери мощности.
  • Электронный дроссель, не требующий стартера. Эти устройства включаются намного быстрее, с ними лампа работает ровно, без миганий и шума. Обладают компактными размерами и небольшим весом.

Люминесцентные лампы могут эксплуатироваться в разных электрических сетях. Соответственно и дроссели разделяются на однофазные, применяемые в бытовых сетях на 220 вольт, и трехфазные, устанавливаемые в светильники, освещающие промышленные предприятия, улицы и другие подобные объекты.

Дроссели могут устанавливаться в разных местах и также условно делятся на две части. Приборы открытого типа встраиваются внутрь корпуса светильника, который защищает их от всех внешних воздействий. Закрытые дроссели помещаются в герметичный влагозащищенный короб. Они используются для установки на улицах и могут выдерживать любые погодные условия.

Устройство

Конструкция люминесцентной лампы состоит из:

  • прозрачной вытянутой трубки;
  • двух цоколей с двумя электродами;
  • стартер, начинающий работать от розжига;
  • электромагнитный дроссель;
  • конденсатор от сети.

Колба лампочки производится из кварцевого стекла. В начале работы на производстве из колбы выкачивают воздух и создают вакуумную среду, а потом она наполняется смесью инертного газа с добавлением ртути. Последняя должна быть в газообразном состоянии, потому что внутри высокое давление.


Превращение в световой луч

Поверхность колбы изнутри покрывается фосфоресцирующим веществом, оно перерабатывает энергию ультрафиолетового света в видимый человеческому глазу луч.

К концам электродов лампочки подсоединяется переменное напряжение сети. Нити из вольфрама покрываются тяжелым металлом, который во время работы испускает электроны. В основном используются цезий, барий, талий. Дроссель похож на катушку, у которой высокая величина магнитной проницаемости.

Электрод

Наружной частью электрод спаивается с цоколем. Из сосуда начинают обильное откачивание всего воздуха с помощью штенгеля, который находится в одной из ножек c электродами. Далее начинается наполнение вакуумной среды инертными газами c добавками ртути.

На определенные виды электродов обязательно напыляют активирующее вещество, например оксид бария, талия или кальция.


Стандартный цоколь

Атом ртути

В люминесцентную лампу добавляют немного ртути, которая превращается в пар во время розжига разряда, и некоторую часть аргона, которая помогает повышению срока эксплуатации изделия и улучшению условий для оживления атомов ртути.

При включении устройства к сети подается электрический разряд, оживляющий работу паров ртути. Тонкая пленка люминофора активизируется под воздействием света паров ртути.

Стеклянная трубка

Трубка из стекла может иметь различный диаметр. Сила светового потока может быть разной, это зависит от мощности люминесцентной лампы. Для ее правильной работы необходим стартер дроссельного вида.

Внимание! Температура в трубке не должна быть свыше 55 градусов. Поэтому данную лампу нельзя применять в промышленных горячих цехах


Классическая электросхема

Люминофор

Самой главной частью люминесцентного устройства будет слой люминофора. КПД люминофоров— соотношение величины излучаемых квантов к величине, поглощённых по большей степени, зависит от качества сырья, используемого при производстве люминофора.

Вам это будет интересно Правила расположения светильников на натяжном потолке

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Предыдущая

ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп

Следующая

ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп

Поделитесь в социальных сетях:FacebookX
Напишите комментарий