Для чего нужен и как выбрать драйвер для светодиодного освещения

Введение

Компаниями «Интеграл» (Республика Беларусь), «Тандем Электроника» (Российская Федерация) и СКТБ «Микроника» (Республика Беларусь) организовано производство LED-ламп и светильников, начиная от разработки, производства интегральных микросхем (ИМС) LED-драйверов и систем управления освещением и заканчивая изготовлением плат применения.

Производимые LED-лампы и светильники характеризуются продолжительным сроком эксплуатации, крайне низким уровнем энергопотребления, высокой светоотдачей, отсутствием пульсаций светового потока, нечувствительностью к нестабильной электросети и к частым включениям/выключениям, способностью уверенно работать в условиях повышенной влажности и серьезных морозов. В случае необходимости используется модульное расположение LED-диодов в осветительной системе, что позволяет не заменять незамедлительно LED-лампу при выходе из строя одного или нескольких светодиодов, так как общая светоотдача такой системы изменяется незначительно.

Светодиодные лампы и светильники обычно состоят из светодиодного модуля и платы источника тока (LED-драйвера), размещенных в корпусе-радиаторе. Все LED-лампы, трубки и светильники компаний «Интеграл» и «Тандем Электроника» комплектуются LED-драйверами, разработанными компанией СКТБ «Микроника», которая использует в их составе ИМС собственной разработки.

Во многих случаях актуально создание с целью экономии электроэнергии (системы уличного, офисного освещения, «умный дом») или для реализации специальных режимов освещения (птицеводческие фабрики, тепличное освещение и др.) управляемых систем освещения, в составе которых необходим управляемый источник питания (УИП). Использование УИП в таких системах освещения может обеспечивать как групповое, так и адресное управление каждым светильником. Кроме того, УИП обеспечивают поддержку открытой распределенной архитектуры с интеллектуальной периферией, которая позволяет, во-первых, оптимизировать систему управления освещением под индивидуальные требования заказчика, во-вторых, система имеет расширенные функции по управлению освещением и обеспечивает возможность ее интеграции с другими распределенными системами управления. Основная область применения таких систем — птицеводческие помещения, энергосберегающее уличное и офисное освещение.

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение – до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем – около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc – сопротивление в килоомах (обычно от 75 до 1000 кОм).

Резистор включается между 8-ой ногой микросхемы и “землей” (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc – 22 = 25/0.24 – 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов – 3А, рабочее напряжение – 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема – это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А)135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь)360 руб/шт.
Транзисторы
40N0611 руб/шт.
IRF741314 руб/шт.
IPD090N03L14 руб/шт.
IRF720117 руб/шт.
50N0612 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В)15 руб/шт.
SS34 (3А, 40В)90 коп/шт.
SS56 (5А, 60В)3.5 руб/шт.

ZXLD1350


Не смотря на то, что эта микросхема является очередным клоном PT4115, некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга. Вот главные отличия:

  • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
  • максимальный ток нагрузки — 350 мА;
  • сопротивление выходного ключа в открытом состоянии — 1.5 — 2 Ома;
  • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
  • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

R = 0.1 / ILED

Минимальное сопротивление резистора — 0.27 Ом.

Типовая схема включения ничем не отличается от своих собратьев:

Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае — мгновенно выйдет из строя.

Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему.

Стоимость микросхемы неоправданно высокая (посмотреть), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

Выбор драйвера

Выбор драйвера во многом определяет место, где планируется установка светильника.

Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20

Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети

В этом случае понадобится источник питания с универсальным входом

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.

Блоки питания и драйверы для светодиодных светильников

Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.

Блок питания PLD-60-1050B для внутреннего светодиодного освещения

Требования к драйверам в зависимости от назначения светильника:

Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.

Герметичный контроллер с драйвером светодиодного светильника

Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.

Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.

От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон

Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах

Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.

Ремонт драйверов светодиодных ламп

Если регулятор тока теряет способность выполнять свои функции, это может привести к выходу из строя светодиодов

Важно вовремя выявить поломку. Для проверки драйвера светодиодной лампы на его вход подается напряжение 220 В

На выходе работающего контроллера должно появиться постоянное напряжение. Также его значение будет несколько выше верхнего диапазона, указанного на упаковке устройства. Этот способ прост в реализации, но не позволяет судить об исправности устройства.

Чтобы проверить, работает ли драйвер, выполните следующие действия:

  1. Установите резистор на выходе стабилизатора тока. Его сопротивление подбирается с учетом заданного тока. Определяется по закону Ома: R=U/I.
  2. Возьмите резистор с рассчитанным сопротивлением и соответствующей мощностью.
  3. После установки резистора измерьте выходное напряжение тестером. Если он не выходит за пределы рабочего диапазона, прибор работает нормально.

Второй способ поиска неисправностей в драйверах:

  1. Если в устройстве есть предохранитель, сожгите его. Тестер должен показать, что сопротивление равно нулю. Если сопротивление достигает бесконечности, замените предохранитель. Если лампа загорается после включения сети, ремонт окончен.
  2. Если предохранитель не перегорел, проверьте наличие дополнительной неисправности. Проверьте диодный мост.
  3. Если выпрямитель исправен, необходимо выпаять сглаживающий конденсатор и прозвонить его. Небольшое сопротивление, растущее на глазах, говорит об исправности конденсатора.
  4. Простому водителю этих проверок будет достаточно, чтобы найти источник проблемы. В сложных стабилизаторах тока нужно будет прозвонить все диоды и электролитические конденсаторы.

При поиске неисправности учитывайте принцип работы схемы:

  • Линейный. В таких контроллерах защита от перепадов напряжения осуществляется резисторами номиналом 5-100 Ом. На вход выпрямителя (диодный мост) помещается сопротивление. Для уменьшения мерцания параллельно нагрузке подключен большой электролитический конденсатор.
  • Импульсный. В этих преобразователях стоят микросхемы, имеющие защиту от всех угроз: перегрева, перегрузок и перенапряжений. Они не должны ломаться, а с китайскими драйверами все бывает.

Проблема с ремонтом драйверов заключается в сложности подбора соответствующих микросхем. Особенно если стабилизатор китайского производства.

Если ни один метод не позволяет найти причины выхода из строя стабилизатора тока, то придется обращаться к специалисту. Или купить другой контроллер.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Как подобрать драйвер для светодиодов

На рынке предлагается широкий выбор драйверов для светодиодов. Многие стабилизаторы не соответствуют указанным параметрам, часто этим грешат китайские производители. Недорогие драйверы «подозрительных» производителей могут занижать мощность и вместо обозначенных 50 Вт фактически выдавать 40 Вт. К тому же у них непродолжительное время работы. Перед покупкой следует отдавать предпочтение брендовым производителям с большим количеством часов работы.

Расчет выбора драйверов для светодиодов

Перед приобретением устройства желательно определиться, какие параметры требуются для драйвера. Взять для примера 6 светодиодов током 0,3 А с падением напряжения 12В. Выбор драйвера определяется схемой соединения светодиодов:

  1. Параллельная схема – потребуется преобразователь на 6 В и ток 0,6 А. Напряжения нужно вдвое меньше, но тока – вдвое больше. Минус схемы: токи в отдельной ветке различны из-за неодинаковых параметров светодиодов, поэтому одна из веток будет светиться интенсивней, чем вторая. 
  2. Последовательная схема – потребуется драйвер на 12 В и ток 0,3 А. Цепь одна с одинаковым током на всем протяжении. Диоды излучают свет все с одинаковой яркостью. Минус схемы – при большом количестве диодов потребуется преобразователь с очень большим напряжением. 
  3. Последовательно-параллельная схема – потребуется driver с такими же характеристиками, как при параллельной схеме, но диоды будут светить с одинаковой интенсивностью. Минус схемы – в первый момент подачи питания в одном из диодов (из-за различных характеристик) может оказаться ток, превышающий номинальное значение в два раза. Светодиоды выдерживают непродолжительные скачки тока, но все же эта схема менее предпочтительна. Не допускается соединять более двух диодов параллельно, так как скачок тока будет значительным и может вывести из строя осветительный элемент. 

Во всех трех случаях мощность драйвера одинакова, составляет 3,6 Вт (Ватт), рассчитывается по формуле:

P=I*U,

где I – сила тока (Ампер), U – напряжение (Вольт).

Мощность преобразователя не зависит от схемы соединения светодиодов, а зависит лишь от их количества.

Приобрести данный товар можно в:

Рекомендуется тщательно подбирать драйверы для светодиодов, от этого зависит срок их службы.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового
лед-кристалла напрямую зависит от силы тока, проходящего через него.
Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к
быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется
для него драйвер. В его задачу входит преобразование параметров электрического
тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Особенности драйвера светодиодов на 220 В

Главная особенность
драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в
том, что он изменяет напряжение и предназначен для работы с электрическим током
подобных характеристик. Поэтому для подключения лампочки не пригодны его
низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме
того, модели последнего типа могут включать в состав понижающий блок –
трансформатор.

При изготовлении
преобразователя своими руками следует знать его основные характеристики:

  1. Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Теория питания светодиодных ламп от 220В

Лэд-лампа, как правило,
представляет собой набор пространственно расположенных в определенной
композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт).
Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80
Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет
для них избыточные параметры.

Поэтому потребуется понизить
амплитуд и силу, а также трансформировать переменный электрический ток в
постоянный. Для этого понадобится драйвер, для изготовления своими руками
которого применяется делитель напряжения на емкостной или резисторной нагрузке,
а также стабилизаторы.

Производители БП

Теоретически оптимальным выбором является БП, специально разработанный для определенной модели светильника. На практике это могут удачно реализовать либо компании, имеющие, помимо светотехнического, еще и мощный бизнес по производству электронных устройств (LG, Philips), либо светотехнические компании, чьи БП хорошо зарекомендовали себя на рынке (Osram).

В остальных случаях предпочтительным вариантом является использование в светильнике БП от ведущих фирм, специализирующихся на данном виде продукции (Meanwell, Helvar, Vossloh-Schwabe и некоторые другие)

Использование унифицированного БП легко заменяемой конструкции важно еще и для возможного ремонта светильника, так как БП обычно выходит из строя быстрее, чем светодиоды

Самостоятельная сборка преобразователя на 10 Ватт

Если хотите своими руками соорудить сетевой драйвер для питания мощного светодиода, воспользуйтесь электронными платами от испорченных экономок. Зачастую подобные светильники прекращают работу именно из-за перегоревших ламп, хотя электронная плата продолжает функционировать. Все компоненты могут применяться для создания блока питания, драйвера и прочих электротехнических приборов. В процессе потребуются конденсаторы, диоды, транзисторы и дроссели.

Разберите вышедшую из строя ртутную лампу мощностью 20 Вт (подходит для драйвера на 10 Вт). В таком случае гарантируется, что дроссель выдержит оказываемую нагрузку. С увеличением потребностей мощности для сетевого драйвера придется выбирать более мощную экономку или вместо дросселя воспользоваться аналогом с огромным сердечником.

Выполните 20 витков на обмотке и паяльником подключите ее к выпрямителю (диодному мосту). Подайте напряжение от промышленной сети 220 В и мультиметром измерьте полученное значение на выходе диодного моста. При использовании инструкции получится значение в районе 9 – 10 В. Светодиодный источник потребляет 0,8 А при номинале 900 мА. Поскольку вы будете подавать ток уменьшенного значения, сможете продлить срок эксплуатации led-диода.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью диммера или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Диммируемые драйверы для светодиодов

Современные контроллеры для светодиодов в большинстве случаев включают в себя устройства, регулирующие яркость осветительных приборов. Использование диммируемых устройств позволяет регулировать комфортный уровень освещения в помещении. Кроме того, это позволяет сохранить срок службы светодиодных осветителей.

Яркость также можно регулировать с помощью внешних диммеров

Диммирующее устройство может быть размещено между источником питания и светодиодным осветителем. Такие устройства напрямую контролируют мощность, подаваемую на светодиоды. Как правило, это импульсные устройства на основе ШИМ-регулирования. Они регулируют количество протекающего тока. В некоторых случаях, когда используются недорогие светодиодные источники, могут наблюдаться такие негативные эффекты, как мерцание.

Диммирующий преобразователь второго типа управляет источником питания. В принципе, его влияние заключается как в ШИМ-регулировании, так и в управлении током, протекающим через устройство. При этом можно наблюдать не только изменение яркости, но и цвета светодиодов. Например, белые светодиоды с этой настройкой могут излучать желтоватый свет при затемнении и ярко-синий преувеличение.

Готовые микросхемы преобразователей тока для светодиодных светильников

На рынке можно встретить готовые микросхемы для преобразования тока. Ниже рассмотрим наиболее популярные из всех:

  1. Supertex HV9910 — импульсный преобразователь с током до 10 мА, не поддерживающий развязку.
  2. ON Semiconductor UC3845 — устройство импульсного типа, выходной ток которого равен 1 А.
  3. Texas Instruments UCC28810 — драйвер импульсного типа с поддержкой развязки и выходным током не более 750 мА.
  4. LM3404HV — отличный вариант для питания светодиодов высокой мощности. Работа построена по принципу преобразователя резонансного типа. Для поддержания номинального тока используется резонансная цепь, состоящая из конденсатора и полупроводникового диода Шоттки. При выборе сопротивления RON есть возможность задать требуемую частоту коммутации.
  5. Maxim MAX16800 — линейный драйвер для малого напряжения (12 В). Выходной ток насчитывает не более 350 мА. Данная схема драйвера для светодиодной лампы — отличный вариант для мощного led-диода или фонарика. Поддерживается диммирование.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий