Особенности, производители и советы по выбору блока питания для светодиодного светильника

Самая простая схема

Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.

Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.

Принцип работы

При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.

После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.

Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.

Люминесцентные светильники на две, четыре и более ламп

Если светильник у вас двухламповый, лучше всего к каждому разъему подавать напряжение отдельными проводниками.

При монтаже простой перемычки между двух и более патронов, конструкция будет иметь существенный недостаток.

Вторая лампа будет светиться, только при условии, что первая установлена на свое место. Уберете ее, и тут же погаснет и другая.

Питающие проводники должны сходиться на клеммную колодку, где поочередно у вас будет подключены:

фаза

ноль

земля

До установки светильника на потолок, необходимо подать на него напряжение и проверить работу ламп. Если какой-то контакт будет отходить, можно здесь же все и подрегулировать, не залезая на верх, прыгая по стремянкам.

Светодиодные лампы, в отличие от люминесцентных с обзором свечения 360 градусов, имеют направленный поток света.

Но за счет возможности поворачиваться вокруг оси на 35 градусов в цоколе G13 + вращая сам цоколь, вы сможете их подрегулировать в нужную вам сторону.

Однако такая конструкция цоколя есть не у всех ламп. И иногда приходится пересверливать крепление патронов на 90 градусов.

Если все в порядке, монтируете светильник на свое место и наслаждаетесь экономным и боле ярким освещением.

Особенности питания светодиодов

Блок питания светодиодных ламп на 220В имеет некоторые особенности работы. Это нужно обязательно учесть, собираясь сделать или отремонтировать этот прибор. Светодиод имеет нелинейную зависимость напряжения и тока. Этой особенностью обладают все осветительные приборы представленного типа.

Так, при увеличении номинального напряжения ток на светодиоде резко возрастает. Это может привести к поломке. Поэтому в недорогих лампах (часто китайского происхождения) последовательно со светодиодом устанавливается ограничивающий резистор. Если произойдет скачок напряжения, он не позволит току увеличиться. Но при этом на резисторе упадет мощность. КПД недорогого светильника по этой причине уменьшается.

Блок питания обеспечивает нормальное напряжение для питания светодиодов. Именно этот прибор чаще всего включается в схему ламп представленного типа. Блок питания для светодиодной лампы 12В или с иным значением исходящего напряжения, называется драйвером. Это маркетинговое обозначение подобных приборов. Источник постоянного напряжения для светодиодов, которые работают от напряжения 12 В, принято называть блоком питания. Если же устройство еще и стабилизирует входной ток, то это драйвер. Можно сказать, что это разновидность блока питания, которая устанавливается в качественных лампах.

Виды драйверов

Существуют две основные категории преобразователей тока для светодиодов — линейного и импульсного типов. На линейном оборудовании выход — генератор тока, гарантирующий стабилизацию при любых перепадах сетевого напряжения. Компонент выполняет плавную подстройку без образования электромагнитных волн высокой частоты. Простые и дешевые изделия с КПД ниже 80 %, что ограничивает область использования до светодиодов и лент малой мощности.

Принцип действия импульсных драйверов сложнее — на выходе образуется серия импульсов тока высокой частоты.

Частота появления импульсов тока всегда постоянна, но коэффициент заполнения может изменяться в диапазоне 10 – 80 %, что приводит к изменению значения выходного тока. Компактные габариты и высокий КПД (90 – 95 %) обусловили широкое распространение импульсных драйверов. Их главный недостаток — большее число электромагнитных помех (в сравнении с линейными).

На стоимости драйвера сказывается наличие или отсутствие гальванической развязки. В последнем случае устройства обычно дешевле, но надежность значительно ниже из-за вероятности поражения током.

Статья из журнала Радио

Основа БП – микросхема BP2857D (см. даташит). При желании можно удалить помехоподавляющий фильтр C1-C4L1L2RU1, пассивный корректор коэффициента мощности (микросхема не имеет встроенной функции коррекции коэффициента мощности) VD5-VD7C6C7R1 и увеличив ёмкость конденсатора С5 до 33 мкФ. Источник, собранный по данной схеме, имеет следующие технические характеристики:

  • Входное переменное напряжение 165…265 В
  • Выходной ток 350 мА
  • КПД не менее 93%
  • Нестабильность выходного тока не более 3%
  • Интервал выходного напряжения 60…110 В
  • Коэффициент пульсаций светового потока 1%
  • Коэффициент потребляемой мощности (PF) 0,91

В момент подачи сетевого напряжения встроенный в микросхему DA1 полевой транзистор открыт. Ток протекает по цепи: плюс диодного моста (корректора коэффициента мощности), сток полевого транзистора (выводы 5 и 6 микросхемы DA1), исток (вывод 8), токоизмерительный резистор R2-R4, дроссель L3, нагрузка, минус диодного моста. В это время дроссель накапливает энергию, одновременно заряжается конденсатор С10. Когда полевой транзистор закроется, нагрузка начнёт питаться запасённой в конденсаторе С10 энергией, а дроссель L3 станет поддерживать ток через диод VD9, подпитывая конденсатор С10. Микросхема DA1 контролирует напряжение на конденсаторе С10 через делитель R8R9C8.

Вывод 8 микросхемы является одновременно и истоком полевого транзистора, и входом токоизмерительной цепи. Падение напряжения на датчике тока R2-R4 служит для контроля микросхемой протекающего через полевой транзистор и нагрузку тока. Моменты открывания и закрывания коммутирующего полевого транзистора зависят от уровней напряжения на выводах 8 и 2 микросхемы. Запуск и питание микросхемы осуществляются через делитель R5-R7. Цепь R10VD8, подключённая к выводу 4 микросхемы, – дополнительное питание в рабочем режиме. Три параллельно включённых резистора R2-R4 позволяют выставить выходной ток с большой точностью. При желании можно обойтись и одним резистором мощностью 0,5 Вт.

Гантелевидный дроссель L1 – стандартный, подходящего размера, с индуктивностью 3 мГн и допустимым током не менее 150 мА. Вместо диодов SMA4007 (VD1-VD4) можно использовать любые малогабаритные выпрямительные для поверхностного монтажа с допустимым обратным напряжением не менее 400 В. Диоды корректора мощности VD5-VD7, а также VD8 – малогабаритные быстродействующие FR107FH в исполнении для поверхностного монтажа или аналогичные. Диод VD9 – сверхбыстродействующий HS1K или аналогичный. Для выходного тока 350 мА резисторы токоизмерительного шунта R2-R4 должны иметь сопротивление 1,6 Ом каждый.

В общем схема вполне приличная и рекомендуемая к повторению, единственный недостаток – нет гальванической развязки от сети. Автор схемы: В. Лазарев, г. Вязьма Смоленской обл. Испытание и фото: djsanya123

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
Переведите потенциометр в положение максимального сопротивления

Плавно убавляйте его, следите за свечением диода и ростом тока.

Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов. После выхода диода на номинальный ток яркость свечения почти не изменяется

После выхода диода на номинальный ток яркость свечения почти не изменяется.

Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.

Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Особенности ремонта led ламп

Основой ремонта считается грамотное диагностирование. Чаще всего достаточно осуществить припой контактов, в определенных случаях провоцируется необходимость замены ключевых узлов.

Ремонт светодиодного светильника

Если вы не знаете, как отремонтировать светодиодную лампу, вы можете изучить нашу статью, а также просмотреть рекомендованное видео, которое вы найдете ниже. Выполнение качественного ремонта, который гарантирует в дальнейшем исправность изделия и его длительную эксплуатацию, начинается с детальной подготовки;

  • Демонтаж светильника;
  • Изучение технической документации;
  • Подготовка приборов (список перечислен выше);
  • Приобретение мультиметра для проверки контактов;
  • Проведение ремонтных работ в зависимости от проблемы;
  • Замена драйвера или же блока питания при необходимости.

Ремонт светодиодных люстр

  1. Приспособление снимается с потолка или же стены;
  2. Корпус прибора снимается;
  3. Изучается схема электронная (чаще всего дефекты являются видимыми);
  4. Удаляется плафон и другие украшения декоративного формата;
  5. Выкручиваются лампочки, производится диагностика цоколя на предмет прогоревших мест (зачистка может быть осуществлена простым ножом);
  6. Заново выполняется процесс сбора, подтяжки винтов, проверка всех контактов.

Ремонт светодиодной ленты

Если не горит вся лента, то нужно проверить подключение блока питания к розетке, проверить напряжение, осуществить процесс анализа целостности провода. Осуществляется проверка блока питания. В лентах именно блок питания страдает чаще всего, и чаще всего его нужно будет просто заменить. Если лента горит частично, то проблема с дорожками. Часть сегментов могла выйти из строя. Их можно заменить, для этого потребуется паяльник и припой.

При мерцании ленты – полной или же частичной, нужно осуществить проверку блока питания, а также осуществить процесс изучения ленты на предмет чрезмерного изгиба. При проблеме с блоком осуществляется его ремонт или же замена, если поврежден определенный сегмент, проводится процесс замены диодов. Если же часть сегментов потухла, но диоды целые, это может отражать проблему с резистором. Нужно осуществить проверку цепи последовательно, чтобы найти участок повреждения и осуществить замену.

Ремонт светодиодных фонарей и прожекторов своими руками

Проведение ремонта является стандартной процедурой. Осуществляется визуальный осмотр, снимается корпус, проверяются все элементы поэтапно. В случае необходимости контакты очищаются и припаиваются, в случае серьезной поломки осуществляется замена резисторов, диодов, драйвера, блока питания и пр.

Техника безопасности при ремонте светодиодных ламп на 220 в

Учитывая, что необходимо произвести ремонт прибора, который работает от сети, то обязательно нужно соблюдать и технику безопасности. Рассматриваемые нами лампы обладают бестрансформаторным питанием, все имеющиеся в устройстве элементы во время работы находятся под напряжением, которое может нести угрозу жизни

Исходя их этого важно соблюдать следующие предосторожности:

  • В процессе перепайки и при необходимости провести любые измерения обязательно нужно следить, чтобы лампа была отключена;
  • При наличии разрядных резисторов, которыми зашунтированы конденсаторы все равно необходимо по завершению ремонта вручную проводить разрядку конденсаторов. Сделать это можно, если закоротить выводы конденсатора, используя любой металлический инструмент, который оснащен диэлектрической ручкой;
  • По завершению ремонта если производится первое включение лампы, берегите глаза. В ряде случаев некоторые элементы в лампе могут взорваться, поэтому лучше предусмотрительно отстраняться или отворачиваться;
  • Внимательно следите за паяльником и не забывайте его выключать при перерывах. Не нужно класть включенный паяльник на предметы, которые могут вызвать воспламенение.

Зная все особенности светодиодных лампочек можно сделать выводы о принципах их работы и соответственно, при необходимости осуществить правильный ремонт

Важно все ремонтные процедуры совершать с соблюдением правил безопасности

Рекомендуем также просмотреть видео по данной теме:

Фокус №8 в рейтинге лучших производителей.

“ФОКУС” – российская промышленная компания, занимающаяся разработкой, проектированием и производством светотехнической продукции.

Приоритетным направлением компании является выпуск светодиодных светильников разного назначения.

Современный ассортимент светильников компании “ФОКУС” включает уличные, магистральные, офисные, тепличные, взрывозащищенные и многие другие типы светильников, сфера применения которых охватывает практически все строения жилого, торгового и промышленного назначения.

Наш специализированный новостной раздел поможет вам всегда быть в курсе последних событий компании “ФОКУС” и ее продукции.

Анонс начала продаж источников питания производства ФОКУC

Компания ФОКУС обладает значительным опытом в разработке и производстве источников питания светодиодов для своих светильников, что в совокупности с контролем качества на каждом этапе изготовления и тестированием в собственной лаборатории позволяет выпускать исключительн …

Выбор блока питания по электрическим характеристикам

Расчет блока питания для любой светодиодной ленты надо начинать с напряжения. Оно должно соответствовать напряжению питания ленты. Если напряжение источника будет выше, светильник быстро выйдет из строя. Если ниже – будет светиться в полнакала.

Второй важный параметр – наибольшая мощность. Она рассчитывается по следующей формуле:

Pист=Руд*Lленты*Кзап, где:

  • Рист – минимальная мощность блока питания;
  • Руд – удельная потребляемая мощность (мощность, которую потребляет 1 метр полотна);
  • Lленты – общая длина отрезков полотна;
  • Кзап – коэффициент запаса, может быть равен от 1,2 до 1,4.

Некоторые величины должны быть рассмотрены подробнее.

Как определить потребляемую мощность одного метра ленты

Проще всего определить потребляемую мощность метра полотна по технической спецификации. Там этот параметр указан в явном виде. Если ее нет, но известен тип ленты, в различных источниках можно найти эту характеристику.

Светодиоды 5050 и 3028 различаются размером.

Если и это невозможно, то во многих случаях удельное потребление можно определить с помощью линейки. Для этого надо измерить размеры светодиода и определить его форм-фактор. По этой характеристике можно найти потребляемую мощность одного светодиода, посчитать их количество на метре и перемножить.

Светодиод -15730-2
Размеры, мм3,5х2,85х55,6х34,8х34,8х3
Потребляемая мощность, Вт0,060,20,50,51
Потребляемый ток, А0,020,060,150,150,3

Проблема только в том, что некоторые LED выпускаются в разных вариантах – с одним кристаллом или с 2-3. В этом случае и мощность будет отличаться в 2-3 раза. И единственный способ найти искомый параметр – взять наименьший отрезок ленты и запитать его от источника заведомо большей мощности. Замерив ток в амперах и умножив его на напряжение питания (12 В или другое), можно получить удельную мощность отрезка (Вт). Посчитав количество отрезков в метре, можно выйти на искомую величину.

Схема измерения тока.

Если амперметра нет, можно перед подключением к источнику питания замерить сопротивление резистора, установленного на отрезке (или считать, если маркировка доступна). После подачи питания замерить напряжение на нем и найти ток по известному соотношению: I=U/R, где I – искомый ток в амперах, U – напряжение питания в вольтах, R – сопротивление резистора.

Резистор в 300 Ом на LED-ленте.

Зачем нужен коэффициент запаса и что он учитывает

При выборе мощности БП без коэффициента запаса он будет работать на пределе своих возможностей. Этот режим имеет свои недостатки:

  1. «Китайский ватт» может быть меньше обычного ватта. Если говорить серьезно, это означает, что фактическая наибольшая мощность недорогих блоков питания из Юго-Восточной Азии зачастую меньше задекларированной.
  2. Часть электронных компонентов на максимальном токе (и максимальном нагреве) имеет сокращенный срок службы. Это особенно касается намоточных деталей (трансформаторов, дросселей), которые в недорогих блоках питания делаются вручную кустарным способом из тонкого провода с некачественной изоляцией.
  3. Если в источнике питания есть некачественно пропаянные контакты (это вполне обычный случай), то на максимальном токе они будут нагреваться и качество соединения будет ухудшаться. Это вызовет еще больший нагрев, и так по кругу до выхода из строя.
  4. При небольшом повышении температуры в помещении электронный блок выходит на предельный режим и его срок службы непредсказуемо сокращается.
  5. Потребляемая осветительной системой мощность зависит от схемы (хоть и не критически). Конфигурация осветителя может содержать: диммер (диммеры), RGB-контроллер, драйвер (или несколько), усилитель (возможно, не один), прочие приборы.

Подключение LED-ленты через блок управления.

Все эти устройства потребляют токи на холостой ход и на собственные нужды (питание внутренней схемы и т.д.), их КПД не равен 100%. По сравнению с токами, потребляемыми LED-светильниками, они невелики. Но если БП работает в режиме «на грани», эта небольшая добавка может стать критической.

Исходя из этих соображений, по реальной ситуации к рассчитанной мощности надо добавить когда 20, а когда и 40 процентов.

Устройство лампы и драйвера

Блок питания для светодиодной лампы 12В является самой распространенной разновидностью. В зависимости от характеристик лампы он может выдавать на выходе 5, 12, 24, 48 В. При этом ток из переменного преобразовывается в постоянный. Это обязательное условие правильной работы системы.

Прежде чем рассмотреть устройство этого элемента лампы, нужно обратить внимание на его место в конструкции. Это позволит при необходимости выполнить ремонт

Лампы светодиодного типа имеют одинаковое устройство. Если демонтировать корпус, можно увидеть внутри драйвер. Это печатная плата, на которую напаяны радиоэлементы.

Цоколь представленных приборов чаще всего имеет размер G4. Блок питания для светодиодных ламп следует сразу после него. Электричество подается на контакты патрона, передаваясь на выводы цоколя. К нему подведено два провода, по которым напряжение подается на драйвер (блок питания). Здесь происходит трансформация тока до заданных параметров. Оно поступает на плату, к которой припаяны светодиоды.

Драйвер – это электронный блок, который представляет собой генератор тока. Он, в свою очередь, также имеет несколько основных компонентов. Напряжение от бытовой сети попадает сначала на фильтр. Он устраняет электромагнитные помехи. Далее ток попадает на выпрямитель. Здесь он становится постоянным. Следующая ступень блока питания предназначена для коррекции коэффициента мощности. Последней стадией, которую проходит в этом устройстве электрический ток, является импульсный стабилизатор тока. К его выходу подсоединены светодиоды.

Такое устройство имеет любая светодиодная лампа. Если нужно собрать блоки питания светодиодных ламп аварийного или основного назначения, придерживаются указанной схемы.

Главные враги светодиодов любого типа – перегрев и деградация

Светодиоды имеют весомый недостаток – они очень маленькие. И даже при колоссальном соотношении потребляемого тока и светоотдачи их придется использовать как минимум в количестве нескольких штук рядом, для того чтобы добиться необходимой яркости. Близкое расположение кристаллов друг к другу сильно влияет на их теплоотвод, они перегреваются и выгорают один за другим. LCD-диоды лишены такой проблемы.

Деградация светодиодов может быть вызвана как перегревом, так и длительным сроком эксплуатации даже с отличным теплоотводом. Со временем они начинают тускнеть при потреблении все того же электричества (при воздействии высоких температур это происходит быстрее). Качественные лампочки спустя несколько лет регулярного использования теряют до 30% яркости, у безымянных «китайцев» этот параметр может доходить до 60%.


Примерный график деградации

Схемы драйверов и их принцип работы

Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:

  1. Со стабилизацией тока.
  2. Со стабилизацией напряжения.
  3. Без стабилизации.

Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.

Драйвер со стабилизацией тока

Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.

Сетевое напряжение через предохранитель F подается на диодный мост  VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.

С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.

Драйвер со стабилизацией напряжения

Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.

Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.

Отличие этой схемы от предыдущей как раз в данном токоограничивающем резисторе. По сути, это схема светодиодной ленты с балластным блоком питания.

Драйвер без стабилизации

Драйвер, собранный по этой схеме, – чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.

На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.

Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.

Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий