Применение транзисторов в жизни
Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:
- Усилительные схемы.
- Генераторы сигналов.
- Электронные ключи.
Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.
Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.
Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.
Принцип действия
Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.
В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.
Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.
В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.
Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.
Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.
Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
- Режим отсечки (cut off mode).
- Активный режим (active mode).
- Режим насыщения (saturation mode).
- Инверсный ражим (reverse mode ).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт.
В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет,
поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе.
Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся.
В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы,
умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора,
который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора,
которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным,
который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал,
поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен».
Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном.
В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру,
и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме.
Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме.
Поэтому в инверсном режиме транзистор практически не используют.
5 технических нюансов работы биполярных транзисторов, которые важно учитывать при проектировании и эксплуатации электронных ключей или регуляторов
Особенность №1
Электрические характеристики БТ описываются сложными формулами. Ими очень неудобно пользоваться на практике. Поэтому электронщики работают с графиками, выражающими связи между входными и выходными параметрами.
Их разделяют на два вида:
- статические, определяющие возможности полупроводниковых переходов по токам и напряжениям на входе и выходе при отсутствии нагрузки (режим холостого хода);
- выходные — зависимость тока через коллектор от приложенного выходного напряжения при конкретном токе через базу.
Каждому БТ присущи свои индивидуальные характеристики. Однако сейчас подобных полупроводников выпущено так много, что практически любому из них не сложно подобрать аналогичную замену даже от другого производителя.
Для работы транзисторов может быть использован один из следующих режимов:
- активный (нормальный или инверсный);
- насыщения;
- отсечки;
- барьерный.
Особенность №2
Любой БТ, созданный с корпусом p-n-p или n-p-n работает практически по одним и тем же алгоритмам, которые отличаются только направлением протекания положительного тока через полупроводниковые переходы.
Поэтому для прямых и обратных транзисторов создаются индивидуальные схемы управления и подключения нагрузки к выходным цепям.
В качестве примера приведу еще одну схему простого зарядного устройства, собранную на транзисторном модуле с p-n-p переходами. Можете ее сравнить с предыдущим вариантом. Увидите практически одинаковую конструкцию, но с обратным направлением тока.
Здесь деталей еще меньше, а регулирование выходных величин осуществляется за счет изменения значения напряжения, подаваемого на вход электронного модуля. Используется обыкновенный потенциометр.
Особенность №3
При открытом состоянии входной полупроводниковый переход в режим отсечки БТ имеет небольшое падение напряжения. В частном случае он составляет порядка 0,7 вольта
Чтобы зафиксировать ваше внимание на этом вопросе специально нарисовал картинку — считается, что так лучше работает человеческая память
Другими словами: потенциал на базе на 0,7 вольта меньше, чем на эмиттере. Для кремниевых изделий он всегда составляет 0,6-0,7 В.
Особенность №4
Ток коллектора БТ определяется как ток базы, умноженный на определенно большое число постоянной величины.
Это свойство используется для классификации транзисторов по коэффициенту передачи тока при коротком замыкании на выходе.
С этой целью введен коэффициент h21. Его суть демонстрирует следующая картинка.
Если выдержать показанные номиналы у приведенной схемы проверки (10 вольт у источника ЭДС и 100 килоом у сопротивления), то показания амперметра в миллиамперах просто умножаем на число 10. Получим значение коэффициента h21.
Подобные алгоритмы заложены в цифровые мультиметры и аналоговые тестеры, которые позволяют измерять коэффициент h21 при проверках БТ.
Особенность №5
При открытом состоянии потенциал внутреннего полупроводникового перехода БТ коллектора выше, чем у эмиттера. В моем частном случае он составляет 0,3 вольта.
Здесь открытый транзистор работает как обычный ключ, но он не идеален. На его внутренней схеме присутствует падение напряжения в 0,3 вольта. Однако в большинстве случаев это не критично.
Допустим, что в коллекторной цепи появилось дополнительное сопротивление. Изменение тока через этот резистор повлечет падение напряжения на нем.
Однако более высокий потенциал коллектора совместно с увеличенным током через базу могут стабилизировать выходные характеристики. В этом случае силовые токи сохраняют свое значение.
Вольт-амперные характеристики транзистора
Наиболее полно свойства биполярного транзистора описываются с помощью статических вольт-амперных характеристик. При этом различают входные и выходные ВАХ транзистора. Поскольку все три тока (базовый, коллекторный и эмиттерный) в транзисторе тесно взаимосвязаны, при анализе работы транзистора необходимо пользоваться одновременно входными и выходными ВАХ.
Каждой схеме включения транзистора соответствуют свои вольт-амперные характеристики, представляющие собой функциональную зависимость токов через транзистор от приложенных напряжений. Из-за нелинейного характера указанных зависимостей их представляют обычно в графической форме.
Транзистор, как четырехполюсник, характеризуется входными и выходными статическими ВАХ, показывающими соответственно зависимость входного тока от входного напряжения (при постоянном значении выходного напряжения транзистора) и выходного тока от выходного напряжения (при постоянном входном токе транзистора).
На рисунке 1.27 показаны статические ВАХ р-п-р-транзистора, включенного по схеме с ОЭ (наиболее часто применяемой на практике).
а б
Рисунок 1.27 – Статические ВАХ биполярного транзистора, включенного по схеме с ОЭ
Входная ВАХ (рисунок 1.27, а) подобна прямой ветви ВАХ диода. Она представляет собой зависимость тока IБ от напряжения UБЭ при фиксированном значении напряжения UКЭ, то есть зависимость вида
. (1.12)
Из рисунка 1.27, а видно: чем больше напряжение UКЭ, тем правее смещается ветвь входной ВАХ. Это объясняется тем, что при увеличении обратносмещающего напряжения UКЭ происходит увеличение высоты потенциального барьера коллекторного р-п-перехода. А поскольку в транзисторе коллекторный и эмиттерный р-п-переходы сильно взаимодействуют, то это, в свою очередь, приводит к уменьшению базового тока при неизменном напряжении UБЭ.
Статические ВАХ, представленные на рисунке 1.27, а, сняты при нормальной температуре (20 °С). При повышении температуры эти характеристики будут смещаться влево, а при понижении – вправо. Это связано с тем, что при повышении температуры повышается собственная электропроводность полупроводников.
Для выходной цепи транзистора, включенного по схеме с ОЭ, строится семейство выходных ВАХ (рисунок 1.27, б). Это обусловлено тем, что коллекторный ток транзистора зависит не только (и не столько, как видно из рисунка) от напряжения, приложенного к коллекторному переходу, но и от тока базы. Таким образом, выходной вольт-амперной характеристикой для схемы с ОЭ называется зависимость тока IК от напряжения UКЭ при фиксированном токе IБ, то есть зависимость вида
. (1.13)
Каждая из выходных ВАХ биполярного транзистора характеризуется в начале резким возрастанием выходного тока IК при возрастании выходного напряжения UКЭ, а затем, по мере дальнейшего увеличения напряжения, незначительным изменением тока.
На выходной ВАХ транзистора можно выделить три области, соответствующие различным режимам работы транзистора: область насыщения, область отсечки и область активной работы (усиления), соответствующая активному состоянию транзистора, когда ½UБЭ ½ > 0 и ½UКЭ½> 0.
Входные и выходные статические ВАХ транзисторов используют при графо-аналитическом расчете каскадов, содержащих транзисторы.
Статические входные и выходные ВАХ биполярного транзистора р-п-р-типа для схемы включения с ОБ приведены на рисунке 1.28, а и 1.28, б соответственно.
а б
Рисунок 1.28 – Статические ВАХ биполярного транзистора для схемы включения с ОБ
Для схемы с ОБ входной статической ВАХ называют зависимость тока IЭ от напряжения UЭБ при фиксированном значении напряжения UКБ, то есть зависимость вида
. (1.14)
Выходной статической ВАХ для схемы с ОБ называется зависимость тока IК от напряжения UКБ при фиксированном токе IЭ, то есть зависимость вида
. (1.15)
На рисунке 1.28, б можно выделить две области, соответствующие двум режимам работы транзистора: активный режим (UКБ< 0 и коллекторный переход смещен в обратном направлении); режим насыщения (UКБ > 0 и коллекторный переход смещен в прямом направлении).
Особенности применения биполярных транзисторов в схемах
Главной бедой транзисторной схемотехники является то, что ей предшествовала ламповая. Большинство схематических решений, которые сейчас применяются, заимствованы из того периода и адаптированы под особенности транзисторов. Однако при всей своей кажущейся схожести, на самом деле электронная лампа и транзистор – приборы совершенно разные. У электронной лампы ток выходной цепи регулируется напряжением во входной, а у транзистора – током во входной цепи. Это отличие – принципиальное для схемотехники.
Попытка адаптировать решения для электронных ламп под транзисторы обычно сводит на нет все их преимущества. Получается на корове седло. Пересмотр многих схемных решений, создание именно транзисторных схем во многих областях еще ждет своего часа.
(читать дальше…) :: (в начало статьи)
1 | 2 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.
Еще статьи
Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери…
Как проверить исправность биполярного и полевого транзисторов. Методика испытани…
Транзисторный силовой ключ. Биполярный транзистор. Ключевой режим. Рас…
Биполярный транзистор в ключевом режиме. Схема. Расчет….
Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем…
Типичные схемы с полевыми транзисторами. Применение МОП….
Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….
Транзисторы КТ503, 2Т503. Справочник, справочные данные, параметры, цо…
Характеристики и применение биполярных транзисторов КТ503 (КТ503А, КТ503Б, КТ503…
Усилитель / Генератор синусоиды на тиристоре (динисторе, тринисторе, с…
Схемы усилителя и генератора синусоидального сигнала на тиристоре в нестандартно…
Понижающий импульсный преобразователь напряжения, источник питания. Ко…
Как сконструировать понижающий импульсный преобразователь. Шаг 1. Как выбрать ча…
Использование переключающихся конденсаторов в бестрансформаторном исто…
Вариант бестрансформаторной схемы источника питания с переключением конденсаторо…
Принцип работы транзистора
Чтобы понять, как работает транзистор, нужно разобраться в том, что происходит с электронами его базового элемента (диода). Диод образуется если легировать одну часть кремния примесью p типа, а другую примесью n типа. На границе этих частей будет происходить следующее:
Многочисленные электроны n стороны будут стремиться занять дырки, находящиеся на p стороне. При этом граница p стороны будет иметь небольшой отрицательный заряд, в то время как с n стороны заряд будет положительным. | |
Электрическое поле, образующееся в результате этого процесса будет препятствовать дальнейшему естественному перемещению электронов. | |
Если к диоду подключить определенным образом внешний источник энергии, то электроны и дырки будут к нему притягиваться, и в данном случае протекание тока не возможно. | |
Однако если поменять стороны подключения источника энергии, ситуация изменится. | |
Предположим источник энергии имеет напряжение достаточное для того, чтобы преодолеть потенциальный барьер. Сразу можно заметить, что электроны будут отталкиваться отрицательным полюсом. Когда электроны пересекают потенциальный барьер, они теряют энергию и легко занимают дырки в p области. Но из-за притяжения к положительному полюсу эти электроны теперь могут перемещаться к соседним дыркам в p области и двигаться по внешнему контуру. Данное явление называется прямым смещением диода. |
Зная вышеописанный принцип работы, можно легко понять как работает транзистор. Ведь фактически транзистор — это два зеркально соединенных диода с очень тонким и слаболегированным p слоем. Поэтому, как бы не был подключен источник питания, один диод будет всегда обратно смещенным и будет препятствовать прохождению тока. Это означает, что транзистор находится в закрытом состоянии. Посмотрим как это выглядит на схеме:
Транзистор находится в закрытом состоянии
Подключим второй источник энергии (смотреть схему). Напряжение его должно быть достаточным, чтобы преодолеть потенциальный барьер. Получаем обычный диод с прямым смещением, и большое количество электронов будет перемещаться из n области. Некоторые электроны займут свободные дырки и перемещаясь по соседним свободным дыркам будут двигаться к базе. Но электронов, перемещающихся в p область гораздо больше. И оставшиеся электроны будут притягиваться к положительному полюсу первого источника энергии и станут перемещаться далее.
Схема подключения второго источника энергии:
Принцип работы транзистора
Режимы работы
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт):
UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0.
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Устройство и принцип действия
Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).
Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.
Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).
Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.
Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).
Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.
Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.
Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины — ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.
У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.
В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.
Watch this video on YouTube
Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран — транзистором, вода — Iк, степень поворота ручки крана — Iб. Для увеличения напора нужно немного повернуть кран — совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.
Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.
Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.
Проверка NPN-транзисторов на практике
Итак, теория позади. Пришло время проверить, как это работает на практике. О транзисторах можно очень много и долго рассказывать, но мы обсудим только их основные принципы работы. Мы начнем со схемы, которая будет использовать транзистор в качестве ключа, управляющего освещением светодиода. Таким образом, контролируя ток базы, мы сможем включать и выключать диод, подключенный к транзистору.
Для сборки схемы потребуются следующие комплектующие:
- Транзистор BC546B,
- Резисторы 1 кОм и 10 кОм,
- Светодиод,
- Аккумулятор 9 В с проводами,
- Макетная плата,
- Мультиметр.
Схема подключения представлена ниже
На точки, обозначенные как амперметры и вольтметры, можете пока не обращать внимание. Вам просто нужно собрать схему таким образом, чтобы можно было щупами мультиметра прикоснуться к этим четырем отмеченным местам
Схема с NPN транзистором
Описание выводов транзистора следует проверять в его документации. Вы также можете использовать наши схемы, вам просто нужно помнить, что всегда лучше проверять описание контактов в примечании к каталогу на наличие новых элементов (не всегда все контакты расположены в одном порядке):
Описание выводов транзистора BC546 (слева вид снизу, т.е. со стороны выводов)
Эта схема может быть собрана на макетной плате, например, следующим образом:
Сборка схемы с транзистором
На практике это может выглядеть следующим образом. В результате этого подключения загорается светодиод, в этом нет ничего необычного, правда? Однако давайте проверим, что именно происходит в цепи.
После подключения АКБ загорается светодиод. Ток течет через базу (ограничивается резистором 10 кОм), что позволяет току протекать через коллектор последовательно с включенным диодом. Резистор (1 кОм) ограничивает ток, протекающий через этот диод, чтобы светодиод не сгорел. Если кабель от положительной шины питания к базе отсоединен, светодиод гаснет.
Если схема работает, на ней можно сделать несколько измерений. Сначала измеряем напряжения, показанные на диаграмме. Речь идет о напряжении между базой и эмиттером (так называемая база-эмиттер) и между коллектором и эмиттером (т.е. коллектор-эмиттер).
Измерение напряжения база-эмиттер | Измерение напряжения коллектор-эмиттер |
Теперь пришло время для более интересного измерения, то есть измерения силы тока. Не забудьте переместить ручку мультиметра в правильное положение и проверить базовый ток (подключив мультиметр последовательно с резистором 10 кОм ), и ток коллектора (подключив мультиметр последовательно с резистором 1 кОм). Т.к. мы ожидаем небольших значений, значит устанавливаем диапазон 20 мА.
Измерение базового тока | Измерение тока коллектора |
Стоит собрать результаты измерений в таблицу:
Интерпретация измерений: напряжение коллектор-эмиттер невелико, порядка нескольких десятков милливольт. Это означает, что транзистор вошел в состояние насыщения. Такое происходит, когда через коллектор протекает ток меньший, чем можно было бы судить по коэффициенту β . Давайте проверим, так ли это: согласно документации на этот транзистор, коэффициент находится в диапазоне от 200 до 450. Об этом свидетельствует буква B в конце маркировки, которая также есть на нашем транзисторе. Фрагмент документации:
Давайте проведем простой расчет: мы знаем ток базы, мы знаем коэффициент усиления по току. Так какой ток должен протекать через коллектор, чтобы он стал ненасыщенным? Преобразуем формулу β = I c / I B к следующему виду: I c = β * I B , затем подставляем в нее крайние значения коэффициента, т.е. 200 и 450. И вычисляем диапазон ожидаемого тока коллектора:
- минимум: I c1 = β * I B = 200 * 0,86 мА = 172 мА
- максимум: I c2 = β * I B = 450 * 0,86 мА = 387 мА
Между тем, через коллектор протекает всего 7 мА. Это потому, что он ограничен резистором 1 кОм. Если бы его не было, через коллектор мог бы протекать гораздо больший ток, но это привело бы к разрушению светодиода, транзистора и (возможно) к повреждению батареи.
Транзистор здесь работает как переключатель: включив базовый ток низкой интенсивности, мы можем включить поток более высокого тока через коллектор. В свою очередь, после отключения тока базы, почти сразу пропадает и коллекторный ток.
Когда ток течет через коллектор, транзистор считается открытым. Тогда напряжение на его основе примерно на 0,7 В выше, чем на эмиттере. В свою очередь, чтобы закрыть транзистор (то есть предотвратить протекание тока коллектора), напряжение база-эмиттер должно быть уменьшено (желательно до нуля).
Порядок и пример расчёта транзисторного каскада с ОЭ
Исходные данные:
Питающее напряжение Uи.п.=12 В.
Выбираем транзистор, например: Транзистор КТ315Г, для него:
Pmax=150 мВт; Imax=150 мА; h21>50.
Принимаем Rк=10*Rэ
Напряжение б-э рабочей точки транзистора принимаем Uбэ = 0,66 В
Решение:
1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.
Pрас.max=0,8*Pmax
2. Определим ток коллектора в статическом режиме (без сигнала):
Iк0=Pрас.max/Uкэ0=Pрас.max/(Uи.п./2)
3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:
(Rк+Rэ)=(Uи.п./2)/Iк0 = (12В/2)/20мА=6В/20мА = 300 Ом.
Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение Rк=10*Rэ, находим значения резисторов :
Rк = 270 Ом; Rэ = 27 Ом.
4. Найдем напряжение на коллекторе транзистора без сигнала.
Uк0=(Uкэ0+ Iк0*Rэ)=(Uи.п.— Iк0*Rк) = (12 В — 0,02А * 270 Ом) = 6,6 В.
5. Определим ток базы управления транзистором:
Iб=Iк/h21=[Uи.п./(Rк+Rэ)]/h21 = [12 В / (270 Ом + 27 Ом)] / 50 = 0,8 мА.
6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения Rб1,Rб2. Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы Iб, чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:
Rб1,Rб2: Iдел.=10*Iб = 10 * 0,8 мА = 8,0 мА.
Тогда полное сопротивление резисторов
Rб1+Rб2=Uи.п./Iдел. = 12 В / 0,008 А = 1500 Ом.
7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:
Uэ=Iк0*Rэ = 0,02 А * 27 Ом= 0,54 В,
где Iк0 — ток покоя транзистора.
8. Определяем напряжение на базе
Uб=Uэ+Uбэ=0,54 В+0,66 В=1,2 В
Отсюда, через формулу делителя напряжения находим:
Rб2= (Rб1+Rб2)*Uб/Uи.п. = 1500 Ом * 1,2 В / 12В = 150 Ом
Rб1= (Rб1+Rб2)-Rб2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.
По резисторному ряду , в связи с тем, что через резистор Rб1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: Rб1=1,3 кОм.
9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.
На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени tн=Rвх*Cвх, где Rвх=Rэ*h21, Cвх — разделительная входная емкость каскада. Cвых транзисторного каскада, это Cвх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) fн=1/tн. Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/tн=1/(Rвх*Cвх)<<fн в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.
Спад АЧХ в области верхних частот определяется постоянной времени перезаряда tв=Rвых*Cк=RкCк, где Cк — паразитная емкость коллекторного перехода (указывается в справочниках). Для звуковых частот, емкость коллекторного перехода незначительна, поэтому паразитной ёмкостью можно пренебречь.