Основные отличия между занулением и заземлением

Заземление

Что такое заземление – это контур, который соединят бытовые приборы через розетки с землей. Это самый действенный вариант обезопасить себя от удара тока. Можно спокойно прикасаться к металлическим деталям корпуса, не получив при этом неприятных ощущений.

Самое важное, чтобы заземляющий контур имел минимальный показатель сопротивления. Вот почему его собирают из стальных или медных элементов. Меньшее сопротивление дает возможность через проводник пропустить ток большего значения

А сила тока короткого замыкания зависит от мощности прибора (зависимость прямая) и сопротивления проводника (зависимость обратная). То есть, чем больше мощность и меньше сопротивления, тем большей силы ток может пройти по заземляющему элементу

Меньшее сопротивление дает возможность через проводник пропустить ток большего значения. А сила тока короткого замыкания зависит от мощности прибора (зависимость прямая) и сопротивления проводника (зависимость обратная). То есть, чем больше мощность и меньше сопротивления, тем большей силы ток может пройти по заземляющему элементу.

Часть контура закапывается в грунт рядом с домом, вторая часть – это проводники, соединяющиеся между собой через распределительный щит. Обе части соединяются на улице методом сварки.

Есть еще одно отличие, которая разделяет между собой защитное заземление и зануление. Это толщина проводников, минимальный размер которых составляет 10 мм² для медного провода или 6-8 мм² для стального. При таких величинах можно не бояться появления в сети тока большой силы, который возникает при замыкании внутри агрегатов большой мощности. К примеру, в бойлере (до 6 кВт) или в стиральной машинке (до 2 кВт).

Схема подключения заземления отличается от схемы зануления. В ней присутствует три провода, которые подводятся к розетке: фаза, ноль и земля. При этом конструкция новых розеток и вилок сделана таким образом, чтобы еще до коммутации фазы и нуля в них первыми подключились контакты заземления. Они же при вынимании вилки из розетки отключаются последними. Это уже обеспечивает безопасность. Теперь перейдем конкретно к рассмотрению вопроса: разница между заземлением и занулением.

Методы защиты

Меры защиты — мероприятия, которые позволяют исключить вероятность получения травм при работе с электроустановками. Кроме этого, защитные меры должны предотвратить возгорание и порчу оборудования.

Схемы подключения в новых домах и домах старой постройки различны. Новые дома оборудованы трехпроводной электропроводкой:

  • PE — заземляющий проводник.
  • L — проводник фазы.
  • N — рабочий ноль.

При соединении корпуса прибора с проводником PE, он оказывается заземлён.

В старых домах используется двухпроводная проводка: L — фаза и PEN — проводник, который выводится от шины заземления в общедомовом электрощите. Для осуществления зануления его расщепляют на N и PE. Расщепление осуществляют либо до ввода в квартиру, либо непосредственно в квартирном распределительном щитке. Проводник PE соединяют с корпусом электроприбора. Такая схема защиты называется зануление, потому что связь с заземлённой шиной осуществляется не напрямую, а через нулевой проводник.

Разница между занулением и заземлением состоит не только в схемах подключения. Главное отличие заключается в механизме действия. При заземлении защита обеспечивается быстрым снижением напряжения между оборудованием и землёй. Основной ток потечёт туда, где сопротивление меньше, то есть через заземляющий провод. Отключения питания при этом обычно не происходит, так как сопротивления заземления недостаточно для короткого замыкания и автоматического отключения.

Что, как и откуда берётся

Известно, что электричество производят электростанции. От них электрический ток напряжением десятки и сотни тысяч вольт идет по трём проводам-фазам к потребителю.

Напряжение столь велико потому, что по законам физики, чем выше напряжение, тем меньше потери при передаче на большие расстояния.

Затем понижающие трансформаторные подстанции преобразуют высокое напряжение в гораздо более низкое (но все равно опасное), и по проводам или подземным кабелям оно придет в наш дом.

Ток должен к электроприбору прийти, сделать полезную работу и уйти. В случае переменного напряжения, используемого в быту, для этого служат фазный (подача) и нулевой провода. Откуда электрический ток приходит, понятно; но куда же уходит электричество? В землю! Немного упрощенно, но по большому счету так и есть. Именно в землю.

Трансформатор подстанции имеет заземление, подключенное к отдельному проводу линии. Это и есть тот самый «ноль» в наших → розетках. Особо любознательные могут убедиться в этом, осмотрев обычную трансформаторную подстанцию с воздушными линиями. Вошло 3 провода, вышло 4. На входе – три фазы высокого напряжения, на выходе – три фазы низкого напряжения и нулевой провод.

А теперь перейдем к главному — защите человека.

Отличия заземления и зануления

Нередко пользователи задаются вопросом, а можно ли делать зануление вместо заземления, и как это отразится на безопасности потребителя. Отвечая на все подобные вопросы, следует исходить из определения, данного этому виду защиты в предыдущем разделе. Из него следует, что функционально зануление более эффективно, поскольку в короткий промежуток времени до срабатывания станционной автоматики оно выполняет ту же функцию, что и обычное ЗУ.

Заземление ПУЭ

Однако это не означает, что данный вид защиты должен применяться всегда и повсеместно. Дело в том, что у зануления имеется целый ряд недостатков, являющихся следствием особенностей его организации. Они проявляются в следующем:

Нулевой провод систем энергоснабжения имеет большую протяжённость и постоянно используется в активном режиме (как проводник, по которому протекает рабочий ток), вследствие чего со временем он может разрушиться;

Дополнительная информация. Указанное явление в технической литературе, а также в среде специалистов чаще всего упоминается как «отгорание нуля» (смотрите фото ниже).

Разрушение нуля

  • В отличие от заземления, при обустройстве которого нет зависимости от фазы защищаемой линии, при занулении должны соблюдаться определенные условия подсоединения защитного проводника;
  • По своим возможностям оно ограничено, поскольку может использоваться только в цепях с наглухо заземлённой нейтралью в сетях TN-C-S, TN-C, TN-S (при наличии N, PE, PEN проводников).

В линиях, где подключение организовано по схеме с изолированной нейтралью (в системах IT и ТТ), по своему назначению более подходящих для промышленных объектов, оно работать не сможет.

Также эти два вида преднамеренной защиты отличаются и по области своего применения, а именно:

  • Зануление обычно применяется в многоэтажных жилых домах, где практически невозможно организовать полноценное заземление;
  • Повторное заземление более часто используется на промышленных предприятиях, где согласно ТБ к безопасности персонала предъявляются повышенные требования;
  • Этот же тип защиты чаще всего применяется в быту (в загородных домах, в частности), где возможностей для обустройства защитного контура имеется предостаточно (смотрите фото ниже).

Защитное заземление в частном доме

Следует добавить, что защитное заземление и зануление отличаются ещё одним важным фактором. Дело в том, что в первом случае защита распространяется только на участок электрической цепи, на котором в аварийном режиме (при пробое изоляции) за счёт стекания тока в землю понизилось рабочее напряжение. При этом вся остальная часть снабжающей электричеством системы продолжает функционировать.

В отличие от действия заземляющего эффекта, при занулении данный участок линии электропитания отключается полностью.

Так что пытаться ответить на вопрос, в чём состоит их различие, будет не совсем корректно. Гораздо правильнее говорить о том, что заземление и зануление электроустановок должны использоваться совместно. Такое комбинированное их применение обеспечит более эффективную защиту от поражения током.

Подводя итог их сравнению, отметим, что принцип зануления состоит в превращении аварийной ситуации в однофазное замыкание, приводящее к срабатыванию станционной защитной автоматики. Заземление же, с одной стороны, представляет собой снижение потенциала опасной точки (уменьшение сопротивления заземлителя), а с другой – их выравнивание.

Оно в данном случае заключается в поднятии потенциала опоры со стоящим на ней человеком до уровня напряжения на заземлённом корпусе.

Как сработает заземление

Итак, как защитит человека заземление? Все обращали внимание на третий контакт бытовых электрических вилок, появившийся в нашей стране в конце прошлого века. Два привычных контакта – это «ноль» и «фаза», куда же ведёт третий? А он и есть заземление и ведёт, как понятно из названия, в землю

Что происходит, если человек дотрагивается до обычного или заземлённого прибора, в чем разница? Заземление и зануление как бы создают второй параллельный маршрут для потока электронов. В случае с заземлением с корпуса прибора проложен электрический провод с хорошим сечением и малым сопротивлением, подсоединённый к металлическим штырям или другим элементам, специально заглубленным в грунт (причём обязательно ниже точки промерзания – лёд плохой проводник).

Если объяснять принцип работы заземления простым языком: электроны, идя по пути наименьшего сопротивления, в основном двигаются в землю по проводу заземления, поток же, идущий через человеческое тело, за счёт этого значительно ослабевает.

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено

Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику «!

Рекомендуем также прочитать:

Что такое заземление, принцип действия и устройство

При создании электросети, в помещениях различного назначения, требуется создание защиты, которая предотвратит вероятное поражение током. Чтобы избежать этого выполняется устройство заземления. В соответствии с ПЭУ п.1.7.53 заземление выполняется в электрооборудовании с напряжением более 50 В переменного и 120 В постоянного тока.

Шина заземления от ГРЩ к потребителю

Заземление – намеренное соединение нетоковедущих металлических частей электроустановок (которые могут оказаться под напряжением) с землей или ее эквивалентом. Данная защитная мера предназначена для исключения вероятности поражения человека электротоком при замыкании на корпус оборудования.

Принцип действия

Принцип работы защитного заземления заключается в:

  • снижении разности потенциалов, между заземляемым элементом и другими токопроводящими предметами с естественным заземлением, до безопасного значения;
  • отвод тока в случае непосредственного контакта заземляемого оборудования с фазным проводом. В грамотно спроектированной электросети возникновение тока утечки вызывает мгновенное срабатывание устройства защитного отключения (УЗО).

Схемы заземления в трехфазных сетях

Из вышесказанного следует, что заземление имеет большую эффективность при использовании в комплексе с УЗО.

Устройство заземления

Конструкция системы заземления состоит из заземлителя (проводящая часть, которая имеет непосредственный контакт с землей) и проводника, обеспечивающего контакт между заземлителем и нетоковедущими элементами электрооборудования. Обычно в качестве заземлителя используется стальной или медный (очень редко) стержень, в промышленности это как правило, сложная система, состоящая из нескольких элементов специальной формы.

Эффективность системы заземления во многом определяется величиной сопротивления защитного устройства, которую можно уменьшить, повышая полезную площадь заземлителей или увеличивая проводимость среды, для чего задействуется несколько стержней, повышается уровень солей в земле и т.п.

Заземляющее устройство это…

Выше мы рассмотрели в общих чертах, что такое защитное заземление. Однако стоит упомянуть, что используемые в системе заземлители различаются на естественные и искусственные.

В качестве устройств заземления в первую очередь предпочтительнее использовать такие естественные заземлители, как:

  • трубы водоснабжения, находящиеся в грунте;
  • металлоконструкции зданий и сооружений, имеющие надежный контакт с землей;
  • обсадные трубы артезианских скважин;
  • металлические оболочки кабелей (исключение составляет алюминий).

Вариант использования трубы в качестве естественного заземлителя

Естественные заземлители должны иметь соединение с защитной системой из двух и более разных точек.

В роли искусственного заземлителя может использоваться:

  • стальная труба с толщиной стенок 3,5 мм и диаметром 30÷50 мм и длиной порядка 2÷3 м;
  • стальные полосы и уголки толщиной от 4 мм;
  • стальные пруты длиной до 10 и более метров и диаметром от 10 мм.

Использование металлических полос в качестве искусственного заземлителя

Для агрессивных почв необходимо использование искусственных заземлителей с высокой устойчивостью к коррозии и изготовленных из меди, оцинкованного или омедненного металла. Итак, мы разобрались с тем, что является определением понятия искусственного и естественного заземлителя, теперь же рассмотрим, когда применяется заземление.

Предлагаемое видео наглядно объясняет, что такое защитное заземление:

В каких случаях необходимо заземление?

Так зачем нужно заземление? Для наглядности стоит рассмотреть несколько примеров:

1. К примеру, в квартире установлена посудомоечная машина. Но по какой-то причине в определенный момент на корпусе появилась фаза, и корпус не заземлен. Но нейтраль линии электропередачи, которая ведет к дому и дает электричество — заземлена, также под заземлением краны и батареи.

Если надеты резиновые тапочки, то при соприкосновении никаких неприятных ощущений и даже малейшего удара не будет. Но вот если нет обуви, и при этом человек еще и схватился за кран, а вторая рука расположена на корпусе, то он становится проводником электрического тока, который подается через корпус на человека, и далее в землю на нейтраль, и на подстанцию.

2. Если посудомоечная машина заземлена? Что произойдет в такой ситуации? Если по каким-то причинам на корпусе появится ноль, то ток сразу уйдет в грунт. Хоть человек босой, хоть в тапочках, ничего не произойдет, заземление сработало, никакого поражения электрическим током все целы и невредимы. Один недостаток, посудомоечную машину нужно будет ремонтировать, но все равно это будет дешевле и лучше.

3. В помещении поломалась стиральная машина, и корпус оборудования находится под напряжением. При соприкосновении с корпусом в таком случае человек получит удар током. Вот зачем нужно заземление, тогда ток уходит в землю и с человеком все хорошо.

Дело в том, что сопротивление человеческой кожи намного выше, чем сопротивление провода, и тогда ток идет по пути наименьшего сопротивления, попадает в землю, и человек остается в целостности. Это один из наиболее простых примеров, который и показывает, зачем нужно заземление в доме или другой постройке. Без такой системы риск получить удар электрическим током возрастает.

Мнение эксперта
Евгений Попов
Электрик, мастер по ремонту

Стоит брать в расчет еще один момент, особенно для владельца частного дома это крайне важная информация. Даже если сооружение построено из натурального материала, количество электрической проводки остается тем же что и в многоэтажном жилом здании, но натуральный материал отлично воспламеняется. Именно исходя из этого, система заземления в частном доме может предотвратить возникновение неприятных ситуаций и пагубных последствий.

Наиболее страшным событием, которое может произойти – это пожар, он возникает вследствие короткого замыкания или выхода из строя электрооборудования. То есть если возникает сомнения и вопросы по поводу того, зачем нужно заземление в частном доме, нужно осознавать, что подобная система защищает не только от возгораний, но и предотвращает от удара электрическим током каждого члена семьи.

Мнение эксперта
Евгений Попов
Электрик, мастер по ремонту

Ситуации могут быть довольно жуткими, но они являются наглядным примером того, к чему может привести халатность и пренебрежение техникой безопасности. Как видно, иногда последствия могут быть действительно самыми серьезными и пагубными.

Как электрический ток действует на тело человека

Тело человека на три четверти состоит из воды. Вода является неплохим проводником электрического тока (правда, механизм проводника несколько иной, нежели у металлов – ионный). Прохождение электрического тока по телу человека сопровождается рядом неприятных явлений. На заземление и зануление электроустановок иногда тратятся огромные, в масштабах предприятий, средства, чтобы это действие предотвратить.

Электроны, двигаясь по живым тканям, вызывают их нагрев, жидкость, содержащаяся в клетках, мгновенно закипает. Кроме этого, электрический ток, воздействуя на нейронные окончания, вызывает конвульсивное спазматическое сокращение всех мышц. Судорога приводит к остановке сердца, к блокировке дыхания.

Для человека опасен проходящий по телу электрический ток от 0,1 А. А вот, какой величины он достигнет, зависит от ряда факторов: от сухости кожных покровов, качества контакта, напряжения, расположения точек «входа» и «выхода» электронов.

Самыми опасными «маршрутами» считаются следующие:

– рука – рука;

– правая нога – левая рука или наоборот;

– голова – любая часть тела.

Зануление

В электрической разводке, собранной по схеме зануления, также присутствуют три провода. Но контакты земля соединены напрямую с нулевыми контактами в распределительном щите. При этом получается, что заземляющий провод и есть нулевой. В системе TN-C, которая присутствует во всех старых домах, подводка к розеткам состоит из двух проводов: фаза и ноль.

Все дело в том, что нейтраль трансформатора, проведенная по нулевому проводу до распределительного щита, является заземляющим проводником. Именно от названия нулевого провода и названа зануляющая система. Оптимально, если провод PE будет проведен от розетки прямо к распределительному щиту. Если делать перемычку внутри розетки, то при обрыве нулевого проводника N оборвется и заземляющая сеть. Поэтому использовать эту схему категорически запрещается.

В чем минус этого способа. В распределительном щите на фазный контур устанавливается автомат, который отключается при появлении короткого замыкания. Но все дело в том, что это устройство реагирует на силу тока, которая определяется характеристиками вставки внутри автомата. К примеру, на панели может быть указан показатель – 16 А. То есть, он будет реагировать именно на эту силу тока или большую. Все, что меньше данного значения, легко проскакивает, и автомат на это не реагирует. Он не будет разрывать цепь, к примеру, если сила тока короткого замыкания равна 10 амперам. А это величина, которая может нанести увечья человеку. При включенном автомате на металлическом корпусе бытового прибора образуется большой потенциал напряжения.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.

Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Задачи заземления

Искусственно созданный контакт между электроустановкой и землей называется заземлением. Его задача — понизить напряжение на корпусе устройства до безопасного для живых существ уровня. При этом большая часть тока отводится в грунт. Чтобы заземлительная система работала эффективно, ее сопротивление должно быть значительно ниже, чем на остальных участках цепи. Такое требование основывается на свойстве электрического тока всегда выбирать наименьшее сопротивление на своем пути.

Тока замыкания иногда недостаточно при использовании заземлителя с относительно высоким для реакции защитных устройств сопротивлением. Поэтому еще одна задача заземлительной системы — рост аварийного тока замыкания.

Типы заземляющих устройств:

  1. Молниезащитные. Отводят импульсные токи, поступающие в систему в результате ударов молнии. Используются в молниеотводах и разрядниках.
  2. Рабочие. Предназначены для поддержания нормальной работоспособности электрических установок. Используются как в обычных, так и в аварийных ситуациях.
  3. Защитные. Защищают людей и животных от поражения током, проходящим по металлическим предметам в случае пробоя фазовых проводников.

Устройства заземления бывают естественными и искусственными:

  1. К естественным относят металлические изделия, основная функция которых не заключается в отводе тока в землю. К таким заземлителям относятся трубопроводы, железобетонные элементы зданий, обсадные магистрали и т.п.
  2. Искусственные заземлители — системы, созданные специально для отвода тока. Это стальные полосы, трубы, уголки и другие металлические элементы.

Для заземлительной системы нельзя использовать трубы, предназначенные для транспортировки горючих веществ (как газов, так и жидкостей), алюминиевые детали, кабельные оболочки. Также не подходят для этой цели предметы, покрытые антикоррозийным изоляционным слоем. Запрещено использовать как заземляющие проводники трубы водопровода и отопления.

Основные отличия

Рассмотрев основные системы электрозащиты, многие спросят, так чем же заземление отличается от зануления. Основное отличие в способе защиты. Ещё зануление почти всегда входит в схему любого заземления. Кроме основных отличий, есть ряд других отличий:

  • Возникшее на корпусе напряжение при заземлении выводится в землю, а при обнулении на ноль в щитке электроустановки;
  • Заземление обеспечивает большую безопасность для тех, кто пользуется электрооборудованием;
  • Сборка схемы для зануления — удел специалиста-электрика, а заземление могут сделать в домашних условиях все, кто хоть немного разбирается в электрике;
  • Заземление обеспечивает безопасность при аварии за счёт резкого понижения напряжения, а в системе зануления эта проблема решается путём отключения подачи электричества.

Что такое электричество

Чтобы уяснить для себя, что такое электробезопасность, защитное заземление, зануление, как это всё работает, напомним суть явления электрического тока.

Все тела во Вселенной состоят из атомов, строение которых известно каждому школьнику: положительно заряженное ядро внутри и вращающиеся вокруг ядра отрицательные электроны. Существует ряд химических элементов – металлов, у которых несколько электронов, находящихся на самых дальних от ядра орбитах, легко могут быть оторваны (притянуты сильным положительным зарядом).

Таким образом, если взять металлический провод, приложить к его концам противоположные электрические заряды, то электроны, оторвавшись от своих атомов, начнут движение в сторону положительного заряда.

Однако при движении в толще металла электроны постоянно «натыкаются» на атомы, заставляют их слегка вибрировать в узлах кристаллических решёток. Это приводит к выделению тепла. Причём нагрев может быть таким сильным, что металл способен раскаляться до тысяч градусов (как спираль лампы накаливания). В некоторых случаях металл и вовсе может расплавиться и даже испариться.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий