Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Разновидности выпрямителей для сварочных работ.

Эти выпрямители классифицируются по разным показателям: начиная от сферы применения и заканчивая конструкционными особенностями.

Так, в зависимости от области использования бывают бытовые, полупрофессиональные и профессиональные выпрямители, которые различаются рабочим напряжением.

Конструкционные особенности силовой части этих устройств определяют такие виды:  

  • тиристорные устройства;
  • оборудование с дросселем насыщения;
  • инверторные;
  • регулируемы трансформатором;
  • с транзисторным регулированием.

Разные типы выпрямительных устройств могут быть применены при разных способах сварки. Так, к примеру, для сваривания в среде защитных газов, а также под флюсом, сварщики выбирают выпрямители, имеющие жесткие внешние характеристики. В этих преобразователях могут применяться различные способы регулировки напряжения. Так, используют:

  • витковую;
  • магнитную;
  • фазовую;
  • импульсную.

Ручная дуговая сварка, обычно, осуществляется с использованием выпрямителей, имеющих падающие внешние характеристики. Эти характеристики формируются двумя способами, а именно:

  1. Повышение сопротивления трансформаторов – часто встречается в выпрямителях, трансформаторы которых имеют магнитный шнур, подвижную либо разнесенную обмотку.
  2. Использование обратной связи по току – этот способ встречается в таких типах выпрямителей, как тиристорный, инверторный, транзисторный.

Кроме того, существуют выпрямители универсального типа, т.е. они формируют жесткие и падающие внешние характеристики.

Мостовые устройства


Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Умножитель (удвоитель) напряжения

В тех случаях, когда нецелесообразно повышать напряжение при помощи трансформатора, применяют удвоители и умножители напряжения. В схеме параллельного удвоения в течении каждого полупериода заряжается один из конденсаторов до амплитудного значения. Так как конденсаторы соединены последовательно, то снимаемое с них постоянное напряжение будет равно двойному амплитудному значению:

В последовательной схеме удвоения в течение одного полупериода заряжается конденсатор С1 через диод VD2 до амплитудного значения. В течение следующего полупериода напряжение обмотки, складываясь с напряжением конденсатора С1, через диод VD1 заряжает конденсатор С2 до двойного амплитудного значения:

Увеличивая количество звеньев в такой схеме, можно получить умножение напряжения любой кратности.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Классификация по назначению и устройству

Разбираемся с электроизмерительными приборами

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Достоинство – дешевизна.


Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.


Трехфазные выпрямители

Однополупериодный многофазный выпрямитель


Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Схема 3-фазного частотника

Преобразователи напряжения импульсные

Тиристорные трехфазные преобразователи частоты используются для управления мощной нагрузкой и находят применение там, где нет возможности включения оборудования на IGBT транзисторах.

Различают два класса устройств по принципу коммутации управляющих элементов:

  • С одноступенчатой коммутацией;
  • Двухступенчатые.

Одноступенчатые устройства отличаются простой схемотехникой, но не обладают возможностью регулировки выходного напряжения, поскольку управление производится всеми тиристорами одновременно. Регулирование напряжения идет путем установки в цепи постоянного питающего напряжения через установку регулируемого выпрямителя.

В свою очередь, двухступенчатые преобразователи делятся на схемы:

  • С групповой коммутацией;
  • С пофазной коммутацией;
  • С индивидуальным управлением.

Данные устройства сложнее не только схемой управления, но и силовой частью, поскольку в них присутствует две группы тиристоров: анодные и катодные.

Пофазная коммутация

Управление осуществляется раздельно по каждой фазе преобразования путем отключения анодного или катодного тиристора.

Индивидуальная коммутация

Здесь управление производится каждым тиристором преобразователя раздельно. За счет индивидуального управления можно реализовывать большое число алгоритмов преобразования, снижать до минимума искажения формы сигнала и уровень электромагнитных помех.

Общая информация об устройстве и его назначении

Сварщик знает, что такое сварочный выпрямитель: устройство имеет вид преобразовательного блока с регулировкой напряжения и силы тока. На выходе выпрямителя находятся 2 провода с отрицательной и положительной клеммами.

При подсоединении одной из них к электроду, а другой — к обрабатываемой детали возбуждается мощная электрическая дуга, расплавляющая металл.

Однако принцип сборки всех устройств одинаков: трансформатор, выдающий нужное напряжение, включают в цепь вместе с полупроводниками, пропускающими положительный компонент синусоиды тока.

Под какие виды сварки используется

Выпрямитель для сварочного аппарата применяется при следующих технологических процессах:

  1. Электродуговой метод с использованием электродов, обработанных различными составами. За счет применения таких стержней поддерживается устойчивая дуга. Это помогает получить однородный прочный шов.
  2. Сварка крупных металлических деталей. Регулировка параметров тока позволяет выполнять работы с заготовками толщиной до 5 см. Вместе с этим аппарат используется и для соединения тонкостенных деталей. Установкой выпрямителя объясняется расширение области применения сварочных агрегатов.
  3. Расплавление кромок обрабатываемых деталей или сердцевины используемого электрода.
  4. Сварка с применением присадочной проволоки. Выпрямители незаменимы при работе с неплавкими электродами, покрытыми вольфрамом.
  5. Соединение деталей из нержавеющей, низкоуглеродистой стали, чугуна, сложно свариваемых сплавов.
  6. Резка металлических заготовок. Для этого повышают силу тока, благодаря чему дуга начинает прожигать материал.

Подходящие электроды

Для сварки с выпрямителем могут использоваться стержни любых марок:

  • электроды, работающие с постоянными параметрами (УОНИ-13/55);
  • универсальные стержни (ОЗС-12, МР-3, АНО-4);
  • специализированные электроды.

Электроды для сварки

Диодный мост

Двухполупериодная схема выпрямления, называемая диодным мостом, для работы задействует четыре вентиля, которые формируют замкнутую цепь. С одной части подключается генератор тока, с другой – резистор.

При подключении обмотки конденсатора, вентили работают попарно, сглаживая положительную и отрицательную полуволну. На выходе остается только плюс, при этом показатель пульсаций равняется 0.48.

Главными достоинствами схемы диодного моста являются простота и высокий коэффициент полезного действия. К минусам относят снижение напряжения на вентилях, что сказывается на эффективности работы систем с низким вольтажом.

Выпрямитель Ларионова

Почти все трехфазные системы которые подразумевают возможность автономной работы используют трехфазные выпрямители на мостовых схемах. Типично, он состоит из моста 6 диодов и конденсатора фильтра шины DC. Правильный выбор конденсатора фильтра очень важен, в виду того что он влияет на силу тока, гармоническое искажение входного сигнала и напряжение тока пульсации выхода.  Стандартный выпрямитель тока на мостовой схеме для  одиночной фазы, работая на чисто активной нагрузке, без конденсатора фильтра, демонстрирует идеальный случай с почти 100% КПД. Напротив, резистивно нагруженный трехфазный мостовой выпрямитель показывает только 95% коэффициента мощности и щедрые 30% тепловыделения. Конденсатор фильтра шины DC любого значения увеличивает КПД и снижает тепловыделение.

Схема работает на двойном периоде. Длительный период равен двум радианам. Небольшой период составляет N / 3, и повторяется в течение большого 6 раз. Небольшой период состоит из двух малых полупериодов p / 6, которые зеркально симметричны и поэтому достаточно разобрать схему на один малый полупериод.

Для случая, когда сопротивление нагрузки можно считать бесконечным, электромоторная сила в ответвлении с наибольшим периодом на этом отрезке замыкает диоды с меньшим периодом ЭДС на этом отрезке.

Рисунок 3 – электрическая схема ЛарионоваРисунок 4 – диаграмма сигнала на выходе схемы  Ларионова

Три полумоста, объединённые звездой

Выпрямитель со схемой «звезда» применяется в тех случаях когда необходимо добиться минимальных пульсаций в сигнале либо когда отсутствует возможность установки стабилизатора в цепь нагрузки. Это происходит в связи с тем что в данном выпрямителе амплитуда пульсаций не превышает 14% от выпрямленного сигнала. Площадь под интегральной кривой равна:

Средняя ЭДС равна: 

то есть в корень(3) раз больше, чем в схемах «треугольник Ларионова» и «три параллельных полных моста» и вдвое больше, чем в схеме Миткевича.

Эквивалентная схема при этом представляет собой две последовательно включенные ветви, в одной из которых одна ЭДС и её сопротивление равно сопротивлению одной обмотки 3*r, в другой две параллельно включенные ЭДС с сопротивлением 3*r каждая, эквивалентное сопротивление двух параллельных ветвей равно 3*r/2. Эквивалентное активное внутреннее сопротивление всей цепи равно 3*r/2+3*r=9*r/2=4.5*r. В режимах, близких к холостому ходу (когда можно пренебречь нагрузкой) параллельно ветвям ЭДС в ветви с большим ЭДС обратному  диоду в ветви с меньшим ЭДС, таким образом изменяется эквивалентная схема. По мере увеличения нагрузки появляются и увеличиваются периоды, в которых обе ветви параллельно работают под симметричной нагрузкой. В режиме короткого замыкания сегменты параллельной работы увеличиваются до длины всего периода, но полезная мощность в этом режиме равна нулю. Частота пульсаций равна 6*f, где f— частота питающего напряжения.

Рисунок 5 – Мостовой трехфазный выпрямительРисунок 6 – диаграмма сигнала на выходе схемы трех полумостов объединенных звездой

Три полных моста параллельно

Площадь под интегральной кривой равна:

Средняя ЭДС равна: 

то есть такая же, как и в схеме «треугольник Ларионова» и в корень(3) раз меньше, чем в схеме «звезда Ларионова».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС закрывает диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста 3*r При увеличении нагрузки (уменьшении Rn) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов  1.5*r. Частота пульсаций равна 6*f, где f — частота сети.

Абсолютная амплитуда пульсаций равна:

Относительная амплитуда пульсаций равна:

Рисунок 7– электрическая схема трех полных мостов параллельноРисунок 8 – диаграмма напряжения трех полных мостов параллельно

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий