Параметры трансформаторов тока
Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.
Коэффициент трансформации
Коэффициент трансформации ТТ определяет номинал измерения тока и означает, при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока к номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда ТТ могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединение (например, такое решение применяется в трансформаторах тока ТФЗМ-110) либо наличием отводов на первичной или вторичной обмотках (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).
Класс точности
Для определения класса точности ТТ вводятся понятия:
- погрешности по току ΔI=I2−I1′{\displaystyle \Delta I=I_{2}-I_{1}^{‘}}, где I2{\displaystyle I_{2}} — действительный вторичный ток, I1′=I1n{\displaystyle I_{1}^{‘}=I_{1}/n} — приведённый первичный ток, I1{\displaystyle I_{1}} — первичный ток, n{\displaystyle n} — коэффициент трансформатора тока;
- погрешности по углу δ=α1−α2{\displaystyle \delta =\alpha _{1}-\alpha _{2}}, где α1{\displaystyle \alpha _{1}} — теоретический угол сдвига фаз между первичным и вторичным токами α1{\displaystyle \alpha _{1}} = 180°, α2{\displaystyle \alpha _{2}} — действительный угол между первичным и вторичным током;
- относительной полной погрешности ε%=(|I1′−I2|)|I1′|{\displaystyle \varepsilon \%=(|I_{1}^{‘}-I_{2}|)/|I_{1}^{‘}|}, где |I1′|{\displaystyle |I_{1}^{‘}|} — модуль комплексного приведённого тока.
Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности: 0,1; 0,5; 1; 3, 10Р. Согласно ГОСТ 7746-2001 класс точности соответствует погрешности по току ΔI, погрешность по углу равна: ±40′ (класс 0,5); ±80′ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичной цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Добавление после обозначения класса точности трансформаторов тока литеры S (например 0,5 S) означает, что трансформатор будет находиться в классе точности от 0,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10 % при максимальном токе КЗ и заданном сопротивлении вторичной цепи. Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной обмотке тока 0,2—200 % номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.
Трансформаторы напряжения
Трансформаторы напряжения (ТН) предназначены для развязки цепей первичной и вторичной коммутации и обеспечения работы средств измерения и защиты со значением напряжения вторичных цепей 100 и 100/√3 В.
Принцип действия ТН основан на тех же явлениях, что и принцип работы ТТ, но при этом элементы нагрузки вторичной обмотки ТН подключены параллельно и ТН работает в режиме близком к режиму холостого хода. Один из выводов вторичной обмотки заземляется.
ТН изготавливаются следующих видов:
- по количеству фаз: одно- и трёхфазные;
- по типу изоляции: с масляной и литой изоляцией.
На практике в трёхфазных электрических сетях для контроля линейных напряжений возможно использование как одно- так и трёхфазных ТН с соединением вторичных обмоток в звезду (б, в) и в открытый треугольник (а, в) как показано на рисунке 6.
Рисунок 6 – Варианты схем подключения одно и трёхфазных ТН: а – подключение двух одно-фазных ТН; б – трёхфазный двухобмоточный ТН;в – трёхфазный трёхобмоточный ТН
Внешний вид ТН НОЛ-10 с литой изоляцией представлен на рисунке 7 a. Данные ТН имеют ленточный C-образный разрезной магнитопровод, что обеспечивает высокий класс точности до 0,2, и обмотки, заливающиеся компаундом на основе эпоксидной смолы, после застывания образующей монолитный корпус.
В сетях напряжением 110 кВ и выше используются ТН каскадного типа, в которых обмотка высокого напряжения распределяется равномерно по нескольким магнитопроводам, что облегчает изоляцию. Основные элементы конструкции каскадного ТН
НКФ-110 показаны на рисунке 9, б, включающей двухстержневой магнитопровод, размещающийся в фарфоровом корпусе (3), установленном на основании (4), высоковольтный ввод (1), маслорасширитель (2), коробку выводов вторичной обмотки (5). На каждом стержне расположена обмотка высокого напряжения, рассчитанная на половину фазного напряжения. Обмотки заливаются трансформаторным маслом.
Каскадные ТН 110 кВ и выше имеют меньшие габариты и массу по сравнению с ТН с аналогичными параметрами нормальной конструкции, что определяет их экономическую эффективность и целесообразность использования. Однако стоит отметить, что результирующее активное и индуктивное сопротивления обмоток каскадных ТН значительно больше, чем у ТН нормального исполнения. В связи с этим необходимо снижать нагрузку ТН для обеспечения высокого класса точности.
Рисунок 7 – Конструкции ТН НОЛ-10 и НКФ-110: а – внешний вид ТН НОЛ-10; б –элементы конструкции НКФ-110
ТН на большие напряжения собираются из нескольких рассмотренных каскадных ТН.
Отдельную группу составляют ёмкостные ТН обладающие высокой устойчивостью характеристик точности и высококачественным откликом при переходных процессах. Такие ТН имеют в конструкции конденсаторный делитель напряжения, состоящий из одного или нескольких ёмкостных модулей с масляной изоляцией, соединённый внутренними вводами-выводами с электромагнитным блоком. На рисунке 8 показаны типовая конструкция ёмкостного ТН (а) и общие виды ТН серии НДКМ-110,220,330 (б). ТН на 330 кВ и выше имеют две или три последовательно соединённые секции.
Рисунок 8 – Конструкция ёмкостного ТН и НДКМ-110,220,330: а – конструкция ёмкостного ТН: 1 ‒ ввод высокого напряжения, 2 ‒ расширительная система, 3 ‒ ёмкостные элементы, 4 ‒ внутренние вводы-выводы промежуточного и низкого напряжений, 5 ‒ указатель уровня масла, 6 ‒ верхняя часть объёма корпуса с газовой подушкой, 7 ‒ компенсирующий реактор, 8 ‒ антиферрорезонансная демпфирующая цепь, 9 ‒ коробка вторичных выводов, 10 ‒ первичная и вторичная обмотка электромагнита, 11 ‒ сердечник; б – общий вид НДКМ на 110, 220 и 330 кВ
Расшифровка маркировки
Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:
- Т — трансформатор тока;
- П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
- В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
- ВТ — встроенный в конструкцию силового трансформатора;
- Л— со смоляной (литой) изоляцией;
- ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
- Ф — с надежной фарфоровой изоляцией;
- Ш — шинный;
- О — одновитковый;
- М — малогабаритный;
- К — катушечный;
- 3 — применяется для защиты от последствий замыкания на землю;
- У — усиленный;
- Н — для наружного монтажа;
- Р — с сердечником, предназначенным для релейной защиты;
- Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
- М — маслонаполненный. Применяется для наружной установки.
- Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
- Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
- следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
- после позиции дробных символов — код варианта конструкционного исполнения;
- буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
- цифра на последней позиции — категория размещения.
Расположение магнитной цепи
Стержневые трехфазные трансформаторы подразделяются на трансформаторы с симметричной магнитной цепью и трансформаторы с несимметричной магнитной цепью. Расположение стержней в одной плоскости приводит к тому, что магнитное сопротивление для потока средней фазы меньше, нежели для потоков крайних фаз.
Действительно магнитные потоки крайних фаз проходят по несколько более длинным путям, чем поток средней фазы. Кроме того, поток крайних фаз, выйдя из своих стержней, проходит в одной половине ярма полностью, и только в другой половине (после ответвления в средний стержень) проходит его половина. Поток же средней фазы по выходе из вертикального стержня тотчас же разветвляется на две половины, и потому в обеих частях ярма проходит лишь половина потока средней фазы.
Таким образом потоки крайних фаз насыщают ярмо в большей степени, чем поток средней фазы, а потому магнитное сопротивление для потоков крайних фаз больше, чем для потока средней фазы.
Следствием неравенства магнитных сопротивлений для потоков разных фаз трехфазного трансформатора является неравенство токов холостой работы в отдельных фазах при одном и том же фазном напряжении. Однако при небольшой насыщенности железа ярма и хорошей сборке железа стержней это неравенство токов незначительно.
Так как конструкция трансформаторов с несимметричной магнитной цепью значительно проще, чем трансформатора с симметричной магнитной цепью, то первые трансформаторы и нашли себе преимущественное применение. Трансформаторы с симметричною магнитною цепью встречаются редко.
Будет интересно Что нужно знать о трансформаторах тока
Основные виды устройства
Основную группу трехфазных трансформаторов составляют броневые трансформаторы. Броневой трехфазный трансформатор можно рассматривать как бы состоящим из трех однофазных броневых трансформаторов, приставленных один к другому своими ярмами. Он может быть разбит на три однофазных броневых трансформатора, магнитные потоки которых могут замыкаться каждый по своей магнитной цепи.
У стержневых трансформаторов обмотки почти целиком открыты и потому более доступны для осмотра и ремонта, а также и для охлаждающей среды. Есть ряд преимуществ и недостатков, по которым выбирают тип трансформатора.
Плюсы и минусы броневых трансформаторов перед стержневыми трансформаторами.
Устройства коммутируются по различным схемам соединения обмоток. Групповые трехфазные трансформаторы применяются при наличии очень больших мощностей, от 630кВА на каждую фазу.
Использование при таких условиях группового трансформатора целесообразно потому, что габариты и масса изделия существенно меньше аналогичного агрегата, работающего на общую мощность группы.
Тем более что при использовании одиночного трансформатора для обладания резервной мощностью приходится устанавливать еще один подобный прибор, а в групповом трансформаторе в качестве резервного можно задействовать один из трех однофазных.
Этим и обуславливается выбор групповых трансформаторов для озвученных целей, несмотря на то что они по сравнению с одиночными аналогами имеют меньший КПД, большие габариты и несколько дороже.
Важность коэффициента трансформации, класса точности, погрешности
Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).
Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.
Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.
Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает
Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Наименование | Изображение |
1. Функция контактора | |
2. Функция выключателя | |
3. Функция разъединителя | |
4. Функция выключателя-разъединителя | |
5. Автоматическое срабатывание | |
6. Функция путевого или концевого выключателя | |
7. Самовозврат | |
8. Отсутствие самовозврата | |
9. Дугогашение | |
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах. |
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Выключатель нагрузки (рубильник) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка):гнездоштырь | |
Разрядник | |
Ограничитель перенапряжения (ОПН), варистор | |
Разборное соединение (клемма) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Частотометр |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.
Наименование | Изображение |
Линия электрической связи, провода, кабели, шины, линия групповой связи | |
Защитный проводник (PE) допускается изображать штрихпунктирной линией | |
Графическое разветвление (слияние) линий групповой связи | |
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных | |
Линия электрической связи с одним ответвлением | |
Линия электрической связи с двумя ответвлениями | |
Шина (если необходимо графически отделить от изображения линии электрической связи) | |
Ответвление шины | |
Шины, графически пересекающиеся и электрически не соединенные | |
Отводы (отпайки) от шины |
Трансформатор напряжения
Измерительные трансформаторы напряжения применяются для понижения напряжений первичного контура с уровня 110, 40, 6, 10 кВ и т. д. Таким трансформаторам доступно выполнять ряд функций:
- Преобразовывать первичное переменное напряжение в стандартный электрический ток.
- Защита обслуживающего персонала, подключенных приборов от перегрузок.
- Техническая поддержка оперативных цепей, которые работают от постоянного и переменного тока
По принципу функционирования измерительные трансформаторы напряжения приближаются к режиму холостого хода. Пользуются спросом такие разновидности представленной измерительной техники, как НТМК, НАМИ, НОЛ и прочие агрегаты. Установки работают с постоянным и переменным током, которые соответствуют назначению. Мы уже писали про трансформаторы НТМИ, подробнее читайте здесь.
Конструкция
Конструкция приборов измерительного типа схожа на обычные силовые разновидности оборудования. Агрегат имеет первичную и вторичную (одну или несколько) обмотки. Активная часть включает в себя серечник из специальной электротехнической стали. Материал набран в виде пластин определенной конфигурации.
Первичный контур имеет большее количество витков, чем на вторичной катушке. На него подается напряжение от сети. К выводам вторичной обмотки подсоединяется ваттметр или иное подобное измерительное оборудование. Оно характеризуется высоким сопротивлением. Поэтому в ходе нормальной работы по вторичной обмотке подается ток с малым значением.
На выходе устройство может коммутироваться с различными реле, вольтметром, ваттметром. Принцип действия системы похож на работу силового оборудования. Работа производится с переменным значением электрического тока. Чтобы преобразовать его в постоянную величину, используется в конструкции выпрямитель.
Погрешность
Класс точности представленного оборудования зависит от определенных факторов. На этот показатель влияют потери при намагничивании. На величину погрешности измерительного преобразователя напряжения влияют следующие факторы:
- Проницаемость электротехнической стали сердечника.
- Конструкционное исполнение магнитопривода.
- Коэффициент мощности, который определяется вторичной нагрузкой.
Оборудование способно компенсировать погрешность показателя напряжения при уменьшении количества витков в первичной катушке. Компенсирующие обмотки влияют на уменьшение угловой погрешности.
Обслуживание
Перед монтажом, запуском в эксплуатацию производится испытание представленного оборудования. При измерениях выполняется изучение режимов работы поверяемых агрегатов, а также контроль изоляционных слоев.
В измерительном процессе применяется соответствующая техника. Поверка производится в условиях производства оборудования. После монтажа также необходимо производить соответствующую оценку работы оборудования заявленным характеристикам. Если будут выявлены отклонения, выполняется ремонт измерительных трансформаторов.
Периодически в соответствии с условиями эксплуатации производится техническое обслуживание агрегата. На это влияет тип конструкции. Соответствующее обслуживание аппаратуры позволяет избежать сбоев в работе системы, непредвиденных поломок, остановок в работе.
Установкой, обслуживанием представленной техники имеет право заниматься только квалифицированный персонал. В противном случае это будет небезопасно для сотрудников. Неправильное обслуживание приводит к нарушению работы техники.
Рассмотрев особенности измерительных преобразовательных приборов, можно понять их отличие, особенности эксплуатации и обслуживания. Это поможет подобрать оборудование, необходимое для обеспечения соответствующих потребителей электрическим током заданного значения.
Классификация по видам
Силовые
Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.
Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.
Автотрансформаторы
Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.
Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.
Трансформаторы тока
Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.
Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.
Трансформаторы напряжения
Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.
Импульсные
Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды
Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.
Разделительные
Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.
Существует два типа таких устройств:
- силовые;
- сигнальные.
Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.
Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.
Согласующие
Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.
Пик-трансформаторы
Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.
Сдвоенный дроссель
Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.
Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.
Как работает трансформатор напряжения?
Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.
Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.
Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.
Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.
Включение измерительных трансформаторов тока и напряжения
Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.
При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.
Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.
Трансформатор напряжения выполняют в виде двухобмоточного понижающего трансформатора (рис. 3.33,а). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют.
Рис. 3.33. Схема включения (а) и векторная диаграмма измерительного трансформатора напряжения (б)
Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, чтоUl = U’2=U2k.
В действительности ток холостого хода I0 (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при измерениях образуются некоторые погрешности.
Трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений.
Трансформаторы тока для электросчетчиков
трансформатор тока в электросчетчиках
Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер.
Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.
Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.
Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1
Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку
Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.
Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2.
Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника.
Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.