Как проверить дроссель-люминесцентного светильника
Продолжаем рассматривать первый вариант схемы люминесцентного светильника — с одной лампой. Для того, чтобы проверить дроссель в схеме люминесцентного светильника, необходимо:
- снять стартер;
- замкнуть накоротко электрический патрон стартера;
- снять люминесцентную лампу;
- замкнуть накоротко контакты двух электрических патронов по отдельности люминесцентной лампы,
— после этого, можно выполнить замер сопротивления дросселя, — предварительно подсоединив два щупа прибора к выводам проводов светильника.
Как проверить стартер люминесцентного светильника
Проверить стартер люминесцентного светильника на сопротивление, как Вы понимаете, невозможно. Лампочка стартера состоит из двух впаяных электродов, находящихся внутри колбы и соответственно, между электродами имеется разрыв. Стартер проверяется непосредственно при установленном и подключенном светильнике, — путем его замены. Тип стартера подбирается с учетом мощности люминесцентной лампы. При замене стартера, необходимо одевать на руки диелектрические перчатки — во избежание соприкосновения с оголенными, контактными соединениями светильника.
Непригодность стартера проявляется в постепенном износе лампы тлеющего разряда, а именно, в износе биметаллической пластины, срабатывающей на включение и отключение мерцание стартера.
Как проверить емкость конденсатора тестером
При замене конденсатора, учитывается его номинальные значения по:
и допуску, в отклонениях. К примеру, Вам необходимо заменить конденсатор, не имеет значения, где Вы собираетесь его заменить:
- в сетевом фильтре;
- в светильнике
и так далее. Вы подобрали конденсатор, который подходит по емкости и напряжению, но не соответствует по допуску. Такой вариант замены конденсатора — уже не подходит, так как отклонение в допуске имеет также большое значение — при замене конденсатора.
Первоначально, необходимо изучить маркировку конденсаторов рис.2 и научиться читать обозначения, можно просто иметь необходимую подобную таблицу под рукой, которая как-бы будет для Вас не плохой подсказкой.
Допустим, нам нужно проверить емкость конденсатора измерительным прибором «мультиметр», конденсатор имеет емкость 47 нанофарад с отклонением в допуске 10% рис.2, первый верхний ряд слева. Для этого, нам необходимо установить прибор в диапазоне измерения емкости от 20 до 200 нанофарад фото №1.
Чтобы не распаивать конденсатор от схемы в зависимости от схемы, обычно распаивается одна ножка конденсатора, я пользуюсь специальным, самодельным приспособлением фото №2. То-есть, это обыкновенные два тонких проводка, на одном конце проводов припаяны два разъема и на другом конце проводов — припаяны два металлических щупа.
Два разъема вставляются непосредственно в гнездо прибора — для измерения емкости фото №3, далее, включаем прибор и подсоединяем два щупа прибора к ножкам конденсатора
На фотоснимке №4 показано изображение такого приспособления, которым очень удобно пользоваться при измерении емкости конденсаторов, подпадающими под диапазон измерительного прибора.
Как проверить люминесцентную лампу тестером
Если у Вас нет в наличии цифрового мультиметра, а имеется стрелочный тестер, — опять же здесь нет никакой проблемы в том, чтобы проверить люминесцентную лампу. Стрелочный тестер устанавливается в диапазон наименьшего измерения сопротивления, два щупа прибора тестера подсоединяются сначала к двум штырькам одного конца лампы, затем, к двум штырькам другого конца лампы рис.3.
В том случае, если спираль закрепленная на электродах будет не нарушеной целой, стрелка прибора будет показывать отклонение в соответствии с сопротивлением спирали.
При отсутствии измерительных приборов, для проверки лампы, можно воспользоваться пробником на батарейках.
Когда нам приходится проводить ремонт потолочных светильников, мы сталкиваемся с единственной проблемой — это отсутствие необходимых деталей в продаже. В этом примере, я обычно обращаюсь к так называемым в народе «железячникам». Это продавцы, торгующие на улице всевозможными деталями. Там действительно можно купить то, чего нет на прилавках специализированных магазинов — по продаже электроники.
На этом пока все. Следите за рубрикой.
Как работает люминесцентный светильник
В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп. В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).
Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.
Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.
При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
Нагрев электродов до 8000С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
Возникновение ЭДС самоиндукции является причиной создания повышенного напряжение величиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
Как проверить стартер люминесцентной лампы
Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.
Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой. А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампы в домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.
Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.
Собрать такую схему не составит труда. Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов. Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.
Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп. Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.
Почему мигает люминесцентная лампа
Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах .
В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе. После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.
Поэтому если вы замечаете постоянное мигание лампы необходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.
При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.
Виды ламп ДРЛ
Этот тип осветителей классифицируется по давлению паров внутри горелки:
- Низкого давления — РЛНД, не более 100 Па.
- Высокого давления — РЛВД, около 100 кПа.
- Сверхвысокого давления — РЛСВД, около 1МПа.
У ДРЛ есть несколько разновидностей:
- ДPИ – Дуговая Ртутная с излучающими добавками. Разница только в примененных материалах и наполнении газом.
- ДРИЗ – ДРИ с добавлением зеркального слоя.
- ДРШ – Дуговая Ртутная Шаровая.
- ДРT – Дуговая Ртутная трубчатая.
- ПРК – Прямая Ртутно-Кварцевая.
Западная маркировка отличается от российской. Этот тип маркируется как QE (если следовать ILCOS – общепринятой международной маркировке), по дальнейшей части можно узнать производителя:
HSB\HSL – Sylvania,
HPL – Philips,
HRL – Radium,
MBF – GE,
HQL – Osram.
Схема, как устройства работают при запуске лампы
Алгоритм зажигания лампочки и роль пускового прибора в ее работе представлены на схеме:
- после подачи электротока на светильник, в работу включается пусковой аппарат, и все напряжение переходит на разогревание его контактов;
- на контактах сила тока 30-50 мА, и возникает эффект тлеющего разряда, разогревающего биметаллические пластины. Под воздействием высокой температуры пластины изгибаются;
- вследствие этого пластины замыкают электроцепь, и по ней идет ток, разогревающий ламповые катоды;
- величину проходящего по цепи электротока ограничивает дроссель, пока электроды в лампочке не разогреются до температуры 800 градусов;
- в результате процесса разогрева повышается электронная эмиссия, способствующая облегчению газового пробоя;
- работа стартера закончилась, и биметаллические катоды остывают и начинают возвращаться на исходную позицию;
- контакты разъединяют электроцепь, и в дросселе происходит ЭДС-самоиндукция с высоким напряжением (1 кВт), возникает электрический импульс, попадающий в колбу с газом;
- разогретые ламповые контакты создают пробой газа, и лампочка начинает светиться.
Работа светильника зависит от правильно подключенных пусковых устройств:
- дроссель с лампой подключаются последовательно;
- стартер со светильником соединяется параллельно;
- также пусковой аппарат параллельно подключается с конденсатором.
Если при эксплуатации светильника с люминесцентной лампочкой возникают неполадки или перебои с включением, необходимо сразу заменить пусковой аппарат. Несвоевременное и неправильное замыкание и размыкание контактов приводит к износу ламповых элементов и окончанию срока службы осветительного прибора.
Стартеры теплового вида имеют следующее отличие от аналогов – это продолжительное время запуска источника дневного освещения. Устройства данного вида при работе потребляют большое количество электроэнергии, что негативно влияет на их экономичность.
Другое название стартеров данного вида – термо-биметаллические, они, как правило, применяются при эксплуатации при низких температурах. Основным отличием от прочих видов является то, что при отсутствии напряжения контакты уже замкнуты, и при подаче напряжения на прибор, возникает более высокий импульс.
Стартеры, использующие в своей работе принцип тлеющего разряда, содержат биметаллические электроды, изготовленные из сплавов с различными коэффициентами термического расширения. Работа приборов данного вида осуществляется следующим образом: при включении светильника в электрическую сеть, напряжение подается на стартер, электроды которого в этот момент разомкнуты.
Под действием поданного напряжения между электродами возникает тлеющий разряд. В цепи проходит небольшой электрический ток и под его действием происходит нагревание биметаллических электродов стартера. Они нагреваются и изгибаются, что обусловлено реакциями, проходящими в биметаллах, под воздействием электрического тока, и именно это и приводит к замыканию цепи.
Размыкание данной цепи приводит к возникновению особого импульса, обладающего повышенным напряжением, который формируется в дросселе и позволяет произвести пробой газа в лампе, и соответственно ее разжигание.
В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются неуправляемыми. В тяжёлых условиях, таких как эксплуатация при пониженных температурах, скорость нагрева биметаллических контактов замедляется, соответственно лампа дневного света зажигается дольше или вообще выходит из строя. Однако, развитие полупроводниковой электроники позволило изготовить стартеры принципиально нового типа.
Полупроводниковые стартеры размещаются в обычном стандартном корпусе с полупроводниковыми компонентами. Они соответствуют всем требованиям предъявляемым к стартерам по мощности и напряжению питания подключаемой лампы. Работа стартеров данного вида, формирование импульса, происходит по принципу ключа – нагрева и размыкания цепи.
Наиболее оптимальными параметрами, данного вида стартеров, обладают приборы со ждущим режимом зажигания, при котором размыкание контактов происходит в необходимой фазе напряжения и достаточной температуре нагрева электродов.
В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются не управляемыми
Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп
Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.
После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 — 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.
Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.
Схема устройства стартера тлеющего разряда: 1 — выводы, 2 — металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь
Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.
Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.
Элементы схемы с дросселем и стартером: 1 — зажимы сетевого напряжения; 2 — дроссель; 3, 5 — катоды лампы, 4 — трубка, 6, 7 — электроды стартера, 8 — стартер.
За 1 — 2 с электроды лампы разогреваются до 800 — 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.
При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 — 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.
К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.
Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.
Стартер выполняет две важные функции:
1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,
2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.
Дроссель выполняет три функции:
1) ограничивает ток при замыкании электродов стартера,
2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,
3) стабилизирует горение дугового разряда после зажигания.
Схема импульсного зажигания люминесцентной лампы в работе:
Популярные производители и модели
Многие известные производители светотехнической техники являются и производителями стартеров, наиболее известные это: Philips, Osram, Sylvania и другие.
Компания Philips (Нидерланды) выпускает широкий ассортимент продукции, в том числе и стартеры. Наиболее современные и совершенные из них это серии: «Ecoclick Starters», «Safety & Comfort Starters», «Green Starters».
Фирмы OSRAM» (Россия) выпускает большой ассортимент стартеров для разного типа и назначения ламп дневного света. Некоторые модификации имеют особые преимущества перед аналогами других производителей.
Такими приборами считаются:
- Стартеры предохранители – DEOS ST 171, DEOS ST 172 и DEOS ST 173;
- Стартеры автоматы – DEOS ST 172;
- Универсальные – DEOS ST 171, DEOS ST 172 и DEOS ST 173.
Автоматические стартеры отключают перегоревшие или неисправные лампы, а также осуществляют повторное включение.
Отдельного внимания заслуживают стартеры, применяемые для специальных ламп, к таким можно отнести лампы для соляриев. Именно такое оборудование, лампы и комплектующие выпускает компания «Havels Sylvania» (Германия). В ассортименте компании электронные стартеры различной мощности, времени подогрева и температуры эксплуатации.
Стартеры устойчивы к ультрафиолетовому излучению, напряжение 220/240 В, предназначены для одиночной схемы включения:
- PureBronze PBS-25, мощностью 4 – 65 Вт;
- PureBronze PBS-100, мощностью 80 – 100 Вт;
- PureBronze PBS-160, мощностью 80 – 160 Вт.
Ассортимент других фирм производителей также широк и разнообразен, что позволяет выбрать прибор по предъявляемым к нему требованиям, однако важно помнить, что не следует выбирать дешевые модели, т.к. в них, как правило, используются дешевые материалы, а это отрицательно скажется на сроке эксплуатации прибора
Как устроено приспособление?
Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.
Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.
Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи электромагнитного балласта. Остальные — подключены к катодам пускателя.
Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.
Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)
Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.
Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.
Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.
В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.
Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы
Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.
Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.
В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети
Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.
В процессе подбора нужного пускателя, учитывая конкретную модель лампы дневного света (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.
Функции и устройство стартера
Пусковой прибор состоит из стеклянного баллона, в составе которого находится газ (чаще всего неон). В основании баллона находятся электроды, а сам он помещен в металлический или пластиковый корпус с отверстием вверху.
Схема устройства стартера выглядит следующим образом:
- Выводы.
- Подвижный электрод.
- Баллон со стеклянной колбой.
- Биметаллический электрод.
- Цоколь устройства.
Принцип работы пускового аппарата лампы такой:
- электроток, попадая в электроды, разогревает их, и происходит их замыкание;
- далее по цепи поступает ток в 1,5 выше номинального электротока в люминесцентной лампочке;
- величину электротока корректирует дроссель, входящий в состав цепи;
- также в стартер выходят конденсаторы, которые снижают электроимпульс при размыкании электроцепи и удерживают его на продолжительное время.
Основные функции, которые выполняет стартер в электроустройстве:
- замыкает электроцепь, чтобы высоким током разогреть ламповые катоды и способствовать быстрому ее зажиганию;
- после разогрева ламповых катодов размыкает электроцепь, что провоцирует вспышку высокого тока, пробивающего газовый промежуток, а так как контакты разогреты, и произошел пробой газа – лампочка светится.
Как подобрать стартер — практические примеры
Рассмотрим, как выбрать «правильный» стартер для люминесцентной лампы. Главный критерий – рабочее напряжение лампы, с которой будет контактировать пусковое устройство, и ее мощность.
Напряжение. Обычно производители не указывают рабочее напряжение на самой лампе, поэтому придется проявить смекалку. Смотрим наш светильник, если необходимо – снимаем защитное стекло и вычисляем рабочее напряжение источника света, ориентируясь на табличку ниже. Именно на такое напряжение и выбираем стартер.
Рабочее напряжение светильника, В | Количество ламп, шт. | Количество дросселей (балластов), шт. | Рабочее напряжение лампы, В |
---|---|---|---|
220 | 1 | 1 | 220 |
220 | 2 | 2 | 220 |
220 | 2 | 1 | 110/127 |
110/127 | 1 | 1 | 110/127 |
110/127 | 2 | 2 | 110/127 |
Мощность. Имеется в виду мощность лампы. Она указана на колбе ЛЛ перед буквой W. На фото ниже слева трубка имеет мощность 30, а справа – 18 Вт.
Если мощность лампы попадает в диапазон, указанный на пусковом устройстве, то оно подойдет. По основным характеристикам стартер выбран, остались второстепенные:
- Срок службы. Обычно срок службы газоразрядных стартеров – 6 000 включений, электронных – в 3-4 раза больше.
- Стоимость. Электронная модификация в разы дороже газоразрядной, хотя имеет не так много преимуществ.
- Бренд. Это основной показатель качества. Пусковое устройство неизвестного производителя может сломаться после первого же включения, а в дополнение – «убить» и саму лампу. Продукция известных производителей не намного дороже, но вероятность сюрпризов при ее использовании существенно ниже.
- Материал корпуса. Существует огромное количество корпусов из разных материалов. Они позиционируются продавцами как самые прочные, вечные и негорючие. Особого внимания на этот параметр обращать не стоит. Во-первых, все пусковые устройства работают в «человеческих» условиях, во-вторых, заявление продавца – нередко просто для лучших продаж.
Для примера выберем стартеры для пары люминесцентных светильников. У нас осветительный прибор с одной лампой, который подключается к сети 220 В. Вынимаем лампу из светильника. На колбе рядом с одним из цоколей читаем ее мощность. Предположим, 36 Вт. Рабочее напряжение ЛЛ, исходя из таблички, приведенной выше, – 220 В.
Практически все стартеры могут работать в определенном диапазоне напряжений и мощностей. Выбираем вариант, в диапазоны которого укладываются параметры нашей лампы. Этот от компании OSRAM годится.
Можно выбрать электронную версию пускового устройства той же компании. Она будет стоить в семь раз дороже.
И еще один пример. Светильник на 220 В, две лампы. Выясняем, сколько электромагнитных балластов установлено в осветительный прибор. Для этого его придется частично разобрать. Если балласт один, лампы рассчитаны на напряжение 110 В. Мощность, как и в первом случае, читаем на колбах ламп. Предположим, по 18 Вт. Осталось выбрать стартеры (их 2 по числу ламп), в диапазоны мощности и напряжения которых укладываются параметры наших источников света. Этот Philips вполне годится.
Мы выяснили, для чего нужны стартеры в люминесцентных светильниках, какими эти устройства бывают и как работают. Теперь проверить исправность пускового устройства и подобрать новое взамен вышедшего из строя несложно.
Предыдущая
ЛюминесцентныеУстройство и принцип работы балласта для люминесцентных ламп
Спасибо, помогло!3Не помогло
Роль конденсатора в схеме
Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам.
Этот элемент решает две ключевые задачи:
- Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
- Влияет на процесс зажигания люминесцентной лампы.
Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.
Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп
Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.
Конденсатор в работе устройства
Этот элемент конструкции поддерживает стабильную работу стартера. Пускатель и конденсатор взаимосвязаны. Основные функции прибора:
- уменьшение интенсивности помех, которые возникают вследствие размыкания и смыкания стартерных электродов;
- увеличение продолжительности импульса, возникающего во время размыкания электродов;
- предотвращение возможности спаивания электродов, возможное вследствие большого значения импульсного напряжения.
Основное отличие конденсаторов заключается в их емкости. Чаще применяются устройства с емкостью в 0,003–0,1 мкФ.
Стартеры различных типов и модификаций конструктивно схожи. Зная основу их устройства, при необходимости пользователь сможет легко проверить и работоспособность.