Естественные и искусственные виды заземления
Естественное заземление — конструкции непосредственно соприкасающиеся с землей
В качестве естественной защиты используются:
- Свинцовые оболочки кабелей, проложенные в траншеях под землей; рельсовые пути неэлектрифицированных подъездных путей, железных дорог и т.д.
- Железобетонные и металлические конструкции любых строительных сооружений, которые непосредственно соприкасаются с землей.
- Проведенные под землей водопроводные и канализационные магистрали. Нельзя использовать металлические трубы, по которым проходят взрывоопасные и горючие вещества.
Искусственное заземление
Как правило, для искусственных заземлителей используют горизонтальные и вертикальные электроды. Роль вертикальных может играть прутик или стальная труба, длиной не менее 3 метров. Суть реализации состоит в том, чтобы верхние концы погрузить в землю и соединить полоской из стали, используя сварочный аппарат. Такая технология образует контур заземления.
Для безопасного использования электрических приборов должны быть использованы естественные заземлители. Их применение позволяет сэкономить семейный бюджет и время, поскольку нет необходимости сооружать искусственные заземлители. Если естественный вид удовлетворяет все требования ПУЭ по сопротивлению растекания, искусственное можно не сооружать.
Сравнение искусственного и естественного контура
Трубопроводы, находящиеся в земле, выполняют роль естественного заземлителя
Естественный контур – это две и более металлические конструкции, которые контактируют с почвой для безопасного использования бытовой техники. Естественное заземление также делится на следующие разновидности:
- Трубопроводы, предназначенные для различных целей, находящиеся в земле.
- Арматура строительных сооружений, которая погружается в слои грунта.
Данные типы защитного контура обязательно должны быть связаны с объектом минимум двумя элементами. Как правило, их устанавливают в разных частях конструкции.
- отопительные системы и канализационные магистрали;
- трубы, поверхность которых покрыта антикоррозийным составом;
- металлоконструкции, предназначенные для транспортировки горючих и токсичных веществ.
Искусственный контур – это специальные конструкции, изготовленные из металла. Для работы их погружают в слои грунта. Наиболее распространенные примеры искусственных защитных контуров:
- Металлические полотна, заложенные в землю. Им могут быть свойственны разные формы и размеры.
- Стержни, уголки, трубы и стальные балки, помещенные в землю.
Режимы работы нейтрали по уровню напряжения
К тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь. При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.
Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.
Компенсированная нейтраль
Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.
Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.
Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.
Про ферромагнитный резонанс смотрите в видео ниже:
Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.
Сфера применения
Заземление типа TT нельзя отнести к стандартному способу решения проблемы защиты. Правила устройства электроустановок содержит нормы, указывающие, что в электросетях с глухозаземленной нейтралью следует использовать заземление стандарта TN. Данная система включает несколько подсистем, в том числе TN-S, TN-C, TN-C-S.
Разные варианты имеют свои особенности, но в то же время схожи конструкцией: заземлительные цепи нейтрали трансформатора и электрических установок объединены. Подобный способ защиты наиболее доступен с точки зрения потребителя, подключающегося к сети. Система TN обходится без создания заземлителя на стороне потребителя.
Чаще всего о необходимости установки TT говорят, когда питающая воздушная линия электропередачи находится в плохом техническом состоянии (особенно если построена по временной схеме). Ненадежность электросети влечет высокий риск повреждения заземляющего проводника (потеря электросвязи между заземлителем на подстанции и заземляющей системой потребителя). В результате такого положения любой пробой изоляции приведет к тому, что напряжение на корпусах электрооборудования будет равно рабочему напряжению сети. Таким образом, система TT особенно актуальна как временное решение проблемы защиты какого-либо объекта (например, строительной площадки, вагончиков для рабочих и т. п.).
Стандарт TT применим и в частных домах. Следует заметить, что организация заземления по этой схеме достаточно сложна для домовладельца. Без помощи опытных специалистов скорее всего не обойтись.
Устройство защитного отключения — защитная система, предназначенная для аварийного отключения сети. Необходимость в нем возникает при утечке тока, что происходит при повреждении изоляционного слоя. УЗО отзывается на разницу токов, идущих по фазному и нулевому проводникам. В случае нарушения изоляции электрической установки возникает шунтирующая цепь через корпус электроустановки на землю и появляется ток утечки на заземление.
Плановые назначения систем заземления
Для максимального понимания предназначения различных систем, необходим детальный разбор каждой из них, включая подсистемы. Наиболее важные моменты — это принцип работы и соответственно базовая направленность.
Система TN
В данной системе осуществляется глухое заземление нейтрали источника питания, и присоединение к ней наружных проводящих частей электропроводки при помощи нулевого защитного проводника. Под термином «глухозаземленная нейтраль» подразумевается подключение проводника N напрямую к контуру заземления (монтируемому около трансформаторной подстанции), а не дугогасящему реактору.
Подсистема TN-C
В TN-C происходит объединение нулевых рабочего и защитного проводников в единый, на протяжении всей системы. Приставка «C» взята со слова «combined», что означает «объединённый». К достоинствам системы можно отнести ее простоту и экономичность. По этой причине она весьма распространена.
Ключевой недостаток TN-C заключается в том, что отсутствует отдельный проводник защитного заземления (РЕ). На практике это равняется неимению заземления в розетках жилого дома. Зачастую в таких системах делается зануление. Данная мера является крайней и рассчитана на принцип короткого замыкания. В случае попадания проводника фазы на корпус прибора, вслед за коротким замыканием произойдет срабатывание автоматического выключателя. С использованием TN-C уравнивать потенциалы в ванной комнате нельзя. Данная подсистема активно применялась в старых жилых постройках. Для современного жилья она не рекомендуема.
Подсистема TN-S
В TN-S нулевые проводники функционируют отдельно на протяжении всей системы. Приставка «S» взята со слова «separated», что означает «раздельный».
Данная заземлительная подсистема является самой передовой и безопасной. При возведении новых построек рекомендуемо именно ее использование. Она обеспечивает добротную защиту людей, оборудования и сооружений.
Однако, несмотря на вышеперечисленные преимущества, TN-S нынче не особо распространена. Это связано с тем, что для ее создания необходимо использовать пятижильный кабель (трехфазная сеть) или трехжильный провод (однофазная сеть). Итогом является повышение стоимости проекта.
Подсистема TN-C-S
В данном случае, нулевые проводники объединяются в единый, на каком-то из отрезков системы. На промежутке от источника электропитания до ввода системы в строение, может быть осуществлено расщепление на N и РЕ проводники. В таком случае будет необходимо повторное заземление.
К достоинствам подсистемы можно отнести ее легкое выполнение с технической точки зрения. При переходе с TN-C требуется довольно несложная модернизация. TN-C-S рекомендуется к широкому использованию.
Недостаток TN-C кроется в необходимости модификации подъездных стояков. Еще один неприятный момент: обрыв PEN проводника чреват возникновением опасного потенциала для электроприборов.
Система ТТ
В системе ТТ происходит глухое заземление нейтрали источника. Что касается наружных проводящих частей, то они подключены к иному заземлителю, который, в электрическом плане независим от первого.
До сравнительно недавних пор данная заземлительная система находилась под запретом. На сегодняшний день она разрешена и вполне востребована. Зачастую ТТ применяется для подвижных зданий, к примеру, вагончиков, ларьков, павильонов и т.д. Ее использование допустимо лишь в ситуациях, когда в системе TN нельзя достичь обеспечения необходимых условий электробезопасности.
Для такой системы в обязательном порядке требуется высококачественное повторное заземление, характеризующееся внушительными показателями сопротивления. Заземление модульно-штыревого типа является наиболее действенным и практичным решением в подобных условиях. Также для всех вышеперечисленных систем крайне рекомендовано использование устройства защитного отключения. Наличие УЗО благоприятно отражается на безопасности.
Система IT
Данной системе присуща изоляция нейтрали от земли или же заземление посредством приборов/устройств, обладающих наибольшим сопротивлением. Наружные проводящие элементы установки при этом заземляются.
Всевозможные научные/медицинские учреждения и лаборатории заземляются посредством IT системы. Это аргументировано тем, что в подобных заведениях присутствует высокочувствительная аппаратура, нередко проводятся опыты и эксперименты. Посему требуется сведение к минимуму всех токов и фундаментальных физических полей.
Основные понятия в теме типы заземления
Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7, ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.
Прежде всего, что такое заземление эклектической сети, по сути
Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).
Зачем нужно заземление?
Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека. Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека. Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.
Почему заземление защищает человека?
Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал. Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли. Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.
Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.
При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.
Альтернативные варианты
Например, в частном доме вместо системы TT можно обустроить TN-C-S. Также практикуются версии TN-C, TN-S. В наших реалиях очень много кабелей на опорах подвешено без изоляции и повторного заземления, поэтому если нужна максимальная безопасность, TT отлично подойдет. Так реально заземлить привезенную ненадолго бытовку, большую емкость или конструкцию из металла, киоск, практически любую комнату с изолирующей отделкой стен.
Важный момент: защита по системе TT всегда независима. Никакой связи с рабочим проводником не должно быть и даже если его контур заземления совсем рядом, все равно нужен отдельный. Зато полная изоляция любых металлических конструкций и поверхностей гарантирована.
Область применения
Защитное заземление типа ТТ отличается от других схем. Согласно ПУЭ 1.7.57 в бытовых сетях используется подключение сетей к трансформатору с глухозаземлённой нейтралью TN. В этой схеме питания заземляющие контакты в розетках и на клеммнике соединены с заземлённой нейтралью трансформаторной подстанции.
Схема защиты TN имеет несколько разновидностей, отличающихся способом соединения заземляющих контактов в розетке с зпземлённой средней точкой вторичной обмотки трансформатора:
- TN-C — заземляющий проводник отсуствует. Вместо него используется нейтральный провод. Не обеспечивает необходимой безопасности, поэтому в жилых зданиях не применяется.
- TN-C-S — от нейтрали питающего трансформатора проложен один проводник PEN, совмещающий функции нулевого и заземляющего проводников. В водном щитке в здании он разделяется на два провода — нейтраль N и заземление РЕ. Место разделения дополнительно заземляется. Это самая распространённая схема из-за простоты переоборудования в неё схемы защиты типа TN-C.
- TN-S — заземляющий провод РЕ проложен от подстанции к электроприборам без разрывов и соединения с нейтралью. Самый надёжный метод защиты.
В ПУЭ гл.1.7 указаны условия выбора каждого из видов защиты. Если эти требования выполнить невозможно, то устанавливается система заземления TT. Чаще всего при заземлении дома схема TT в зданиях с вводом по воздуху, выполненным двумя проводами. Провода, проложенные ещё в советское время, в плохом состоянии и разделение PEN проводника на РЕ и N на вводе в дом не обеспечивает необходимого уровня защиты.
Ещё одна причина выполнить монтаж защиты здания по схеме TT — плохое техническое состояние магистральных воздушных линий. Согласно требованиям ПУЭ п.1.7.102 провод PEN должен заземляться на столбах, по которым он проложен. Естественно, за много лет, прошедших с момента прокладки, контур заземления на многих опорах вышел из строя.
Эти требования вызваны тем, что при обрыве провода РЕN и отсутствии повторного заземления на металлических элементах корпуса электроприбора окажется опасное для жизни напряжение.
В связи с этим система заземления TT применяется на дачах, в охотничьих домиках, временных сооружениях на стройках и других аналогичных ситуациях. Достоинство этой конструкции в том, что для изготовления заземления достаточно простого землеройного инструмента и электросварки.
В связи с тем, что сопротивление заземления может быть недостаточным для надёжной защиты и отключения автоматического выключателя, в ПУЭ п.1.7.59 указывается на обязательность установки УЗО или дифавтомата. Ток утечки, появляющийся при замыкании на корпус или прикосновении к элементам, находящимся под напряжением, человека, достаточен для срабатывания этой защиты.
Важно! Использовать заземление в качестве нейтрального провода нельзя. Это приведёт к быстрой коррозии контура и его разрушению
Система TN и ее разновидности
В схемах TN при подключении нолей используется нейтраль источника, наглухо соединенная с заземлителем. Все элементы сети, проводящие электроэнергию, подключаются к общему нолю, который соединен с нейтралью.
Существует несколько типов нулевых проводников:
- функциональный (N);
- защитный (PE);
- комбинация проводников (PEN).
Система заземления нейтрали TN имеет несколько подвидов, отличающихся типом подключения N и PE.
Подсистема TN-C
Схема заземления TN-C
В TN-C проводники с защитной и рабочей функцией совмещены в PEN по всей длине. Производится так называемое защитное зануление. Классическая схема состоит из трех фазных и одного нулевого провода. К нейтрали, заземленной наглухо, подключаются открытые токопроводящие металлические элементы с помощью дополнительных нолей.
- простой монтаж;
- экономичность, за счет выполнения двух функций одним проводом.
при нарушении целостности проводника потребители могут оказаться незащищенными.
Подобные типы заземления устарели и не используются в новых постройках. Их можно встретить в старых домах или в уличном освещении.
Подсистема TN-S
Схема заземления TN-S
TN-S более современна и безопасна. Нулевые проводники в ней разделены. Каждый из них выполняет свое предназначение: рабочее или же защитное. N и PE разделяются на подстанции, ноли подключаются через глухо заземленную нейтраль энергоисточника. Трехфазное напряжение подается посредством пяти проводов, в однофазном участвует три провода. Состояние контура заземления в данной системе не нуждается в контроле.
- высокая безопасность;
- эффективная защита от поражения электричеством;
- отсутствие помех на силовых линиях пользователей.
дорогостоящий монтаж.
TN-S применяется в новых зданиях и телекоммуникационных сетях.
Подcистема TN-C-S
Схема заземления TN-C-S
В TN-C-S проводник PEN в определенном месте (обычно в главном распределительном щите при входе в здание) разветвляется на отдельные N и PE проводники. В целях бесперебойной работы в системе устанавливается дополнительный заземлитель после места разделения. При однофазном питании электроснабжение выполняется с помощью кабеля из трех жил. При трехфазном питании – из пяти жил.
- простой монтаж конструкции;
- высокий уровень безопасности;
- выгодное соотношение «цена/качество».
высокая степень риска электротравм при нарушении изоляции PEN проводника вне здания.
Эта система защитного заземления считается одной из самых оптимальных для жилых зданий.
Выбор системы заземления для частного дома
Можно почитать форум , а также статью “”
Для современного частного сектора подходят только две системы заземления ТТ и TN-C-S. Практически весь частный сектор запитывается от трансформаторных подстанций с глухозаземлённой нейтралью и четырёхпроводной ЛЭП (три фазы и PEN, объединённый рабочий и защитный ноль или, иначе говоря, объединённый ноль и земля).
Особенности системы заземления TN-C-S
Согласно п. 1.7.61 ПУЭ при применении системы TN рекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Т.е. проводник PEN на вводе в дом повторно заземляется и делится на PE и N. После этого используется 5 или 3 проводная проводка.
Коммутация PEN и PE строго запрещена (ПУЭ 7.1.21. Во всех случаях в цепях РЕ и РЕN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы). Точка разделения должна стоять до коммутационного прибора. Запрещается разрывать PE и PEN проводники.
Недостаток системы TN-C-S
при обрыве PEN проводника на корпусах заземлённых электроприборов может оказаться опасное напряжение.
Описание системы TN-C-S – Описание системы TN-C-S только на современных ЛЭП выполненных проводом СИПрекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе в электроустановки зданий,обязательно должны быть выполнены повторные заземления на ЛЭП.
Согласно п. 1.7.135 ПУЭ когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
Для обеспечения высокого уровня безопасности от поражения электрическим током в системе TN-C-S необходимо использовать устройства защитного отключения (УЗО).
Особенности системы заземления ТТ
Описание системы ТТ – Описание системы ТТ защитный проводник PE заземляется независимо от нулевого рабочего проводника N и запрещена какая-либо связь между ними.
Систему TT рекомендуется применять при неудовлетворительном состоянии питающей воздушной линии электропередач (ВЛ) (старые неизолированные провода ВЛ, отсутствие повторного заземления на опорах).
Замечание
СП 31-106-2002 “ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ИНЖЕНЕРНЫХ СИСТЕМ ОДНОКВАРТИРНЫХ ЖИЛЫХ ДОМОВ” устанавливает, что электроснабжение жилого дома должно осуществляться от сетей напряжением 380/220 В с системой заземления TN-C-S.
Внутренние цепи должны быть выполнены с раздельными нулевым защитным и нулевым рабочим (нейтральным) проводниками.
Правила монтажа системы ТТ:
- Установка УЗО на вводе с уставкой 100-300 мА (пожарное УЗО).
- Установка УЗО с уставкой не более 30 мА (желательно 10 мА – на ванную) на все групповые линии (защита по току утечки от прикосновения к токоведущим частям электрооборудования при появлении неисправностей в электропроводке дома).
- Нулевой рабочий проводник N не должен соединяться с местным контуром заземления и шиной РЕ.
- Для защиты электрических приборов от атмосферных перенапряжений необходимо устанавливать ограничители перенапряжения (ОПН) или ограничители импульсных перенапряжений (ОПС или УЗИП).
- Сопротивление контура заземления Rc должно удовлетворять условию ПУЭ (п. 1.7.59):
- при УЗО с уставкой в 30 мА сопротивление контура заземления (заземлителя) – не более 1666 Ом;
- при УЗО с уставкой 100 мА сопротивление контура заземления (заземлителя) – не более 500 Ом.
Для выполнения вышесказанного условия достаточно будет использовать один вертикальный заземлитель в виде уголка или прутка длиной около 2-2,5 метра. Но я рекомендую выполнить контур более тщательно, забив несколько заземлителей (хуже не будет).
Недостатки системы ТТ:
При коротком замыкании фазы на землю на корпусах электроприборов будет опасный потенциал (ток короткого замыкания недостаточен, чтобы сработал автомат защиты, поэтому обязательна установка УЗО – ПУЭ 1.7.59).
Указанный недостаток системы можно нейтрализовать установкой реле контроля напряжения и УЗО (2-х каскадная схема с одним “пожарным” или селективным УЗО на весь дом и несколькими УЗО на всех линиях потребителей).
Указанную 2-х каскадную схему с одним УЗО на 100 мА и 3-я УЗО на 30 мА (на каждую из фаз) я оборудовал и у себя. Эта схема себя оправдала, отключив электроэнергию именно с помощью УЗО, когда я второпях сунул щупы неверно подключенного мультиметра в розетку.
Как правильно сделать
Сначала разберемся с формой заземлителя. Наиболее популярный — в виде равностороннего треугольника, в вершинах которого забиты штыри. Есть еще линейное расположение (те же три штуки, только в линию) и в виде контура — штыри забиваются вокруг дома с шагом около 1 метр (для домов площадью более 100 кв. м). Штыри между собой соединены металлическими полосами — металлосвязью.
Самая популярная модель заземлителя
Порядок действий
От края отмостки дома до места установки штыре должно быть не менее 1,5 метров. На выбранном участке копают траншею в виде равностороннего треугольника со стороной 3 м. Глубина траншеи 70 см, ширина — 50-60 см — чтобы было удобно варить. Одну из вершин, как правило, расположенную ближе к дому, соединяют с домом траншеей имеющей глубину не менее 50 см.
Копают траншею
В вершинах треугольника забивают штыри (круглый пруток или уголок длиной по 3 м). Над дном котлована оставляют около 10 см
Обратите внимание, заземлитель на выводят на поверхность земли. Он находится ниже уровня грунта на 50-60 см
К выступающим частям стержней/уголков приваривают металлосвязь — полосу 40*4 мм. Созданный заземлитель с домом соединяют металлической полосой (40*4 мм) или круглым проводником (сечением 10-16 мм2). Полосу с созданным треугольником из металла тоже сваривают. Когда все готово, места сварки очищают от шлака, покрывают антикоррозионным составом (не краской).
Приваренная полоса
После проверки сопротивления заземления (в общем случае оно не должно превышать 4 Ом), траншеи засыпают землей. В грунте не должно быть крупных камней или строительного мусора, земля послойно утрамбовывается.
На входе в дом к металлической полосе от заземлителя приваривают болт, к которому крепится медный проводник в изоляции (традиционно окраска заземляющих проводов — желтая с зеленой полосой) сечением жилы не менее 4 мм2.
Выход заземления у стены дома с приваренным на конце болтом
В электрощитке заземление подключается к специальной шине. Причем, только на специальную площадку, начищенную до блеска и смазанную консистентной смазкой. От этой шины «земля» подключается к каждой линии, которая разводится по дому. Причем разводка «земли» отдельным проводником по ПУЭ недопустима — только в составе общего кабеля. Это значит, что если у вас проводка разведена двухжильными проводами, вам придется ее полностью менять.
Почему нельзя делать отдельные заземления
Переделывать проводку во всем доме, конечно долго и дорого, но если вы хотите без проблем эксплуатировать современные электроприборы и бытовую технику, это необходимо. Отдельное заземление определенных розеток неэффективно и даже опасно. И вот почему. Наличие двух или более таких устройств рано или поздно приводит к выходу включенного в эти розетки оборудования. Все дело в том, что сопротивление контуров зависит от состояния почвы в каждом конкретном месте. В какой-то ситуации между двумя устройствами заземления возникает разница потенциалов, которая приводит к поломке оборудования или электротравме.
TN-C-S
Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.
Как она устроена, и в чем отличие от TN-S?
В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.
На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.
В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.
Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.
При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.
Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.
Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.
Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.
Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.