Обзор работоспособных схем подключения люминесцентных ламп

Устройство люминесцентных ламп

Схема подключения обычной люминесцентной лампы значительно отличается от аналогичной схемы приборов накаливания. Они состоят из основных компонентов:

  • плата управления, регулирующая поступление тока;
  • электроды;
  • стеклянная трубка или колба, покрытая люминофором.

Внутри колбы находится смесь паров ртути и инертных газов, и электроды. Входное напряжение вызывает движение частиц, порождая ультрафиолетовое излучение. Однако оно невидимо человеческому глазу. В видимый свет его переводит люминофор, которым покрывается внутренняя поверхность колбы. Изменение состава люминофора меняет оттенок и цветовую температуру освещения.

Устройство люминесцентных осветительных приборов.

Процессами управляют стартер и пускорегулирующий аппарат, стабилизирующие напряжение и обеспечивающие равномерное свечение без пульсаций и мерцаний.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Общие сведения о люминесцентных лампах

Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ. Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным. Тогда при маркировке указывается, что это лампа ЛД, т. е. «дневная». Интересен тот факт, что при исследованиях выявлено – лампы с более теплым оттенком имеют более высокий КПД, хотя на глаз кажется, что холодные цвета светят немного ярче.

И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:

  • Т8 на 36 Вт имеет длину в 120 см;
  • Т8 на 30 Вт – 89 см («восьмидесятка»);
  • Т8 на 18 Вт – 59 см («шестидесятка»);
  • Т8 на 15 Вт – 44 см («сороковка»).

Как работает экономка

Внешний облик ламп дневного света может быть различным. Несмотря на это они имеют одинаковый принцип работы, который реализуется благодаря следующим элементам, которые обычно содержит схема прибора:

  • электродов;
  • люминофор – специальное люминесцентное покрытие;
  • стеклянная колба с инертным газом и парами ртути внутри.

Строение люминесцентной лампочки

Такая лампа дневного света представляет собой газоразрядное устройство с герметичной стеклянной колбой. Газовая смесь внутри колбы подобрана таким образом, чтобы снижать затраты энергии, необходимые на поддержку процесса ионизации.

Для этого на электроды люминесцентной лампы подается на электроды напряжение конкретной величины. Они расположены в противоположных сторонах стеклянной колбы. Каждый электрод имеет два контакта, которые соединяются с источником тока. Таким образом происходит обогрев пространства вблизи электродов. Фактическая схема подключения данного источника света состоит из серии последовательных действий:

  • нагрев электродов;
  • далее на них осуществляется подача высоковольтного импульса;
  • в электроцепи поддерживается оптимальное напряжение для создания тлеющего разряда.

В результате этого в колбе образуется ультрафиолетовое невидимое свечение, которое, проходя через люминофор, становится видимым для человеческого глаза. Чтобы поддерживать напряжение для создания тлеющего разряда, схема работы люминесцентных ламп предполагает подключение следующих приспособлений:

дросселя. Он выступает в роли балласта и предназначен для ограничения силы тока, текущего по прибору, до оптимального уровня;

Дроссель для люминесцентных лампочек

стартера. Он предназначен для защиты лампы дневного света от перегрева. При этом он регулирует накал электродов.

Очень часто причиной поломки экономок является выход из строя электронной начинки балласта или перегорания стартера. Чтобы этого избежать, можно не использовать в подключении перегорающие детали.

Стандартная схема соединения

Стандартная схема, применяемая для подключения люминесцентных ламп, может быть видоизменена (идти без дросселя). Это позволит минимизировать рис выхода из строя осветительного прибора.

Вариант включения без балласта

Как мы выяснили, балласт в устройстве лампы дневного света играет важную роль. При этом на сегодняшний день существует схема, при которой можно избежать включение данного элемента, который очень часто выходит из строя. Можно избежать включения, как балласта, так и стартера.

Как видим, данная схема не содержит нить накала. При этом питание ламп/трубки здесь будет осуществляться через диодный мост, который и будет создавать повышенное постоянное напряжение. Но в такой ситуации необходимо помнить о том, что при данном способе питания осветительное изделие может потемнеть с одной стороны. В реализации приведенная выше схема достаточно проста. Ее можно реализовать при помощи старых компонентов. Для такого типа подключения можно использовать следующие элементы:

  • трубка/источник света мощностью 18 Вт;
  • сборка GBU 408. Она будет выступать в роли диодного моста;

конденсаторы с рабочим напряжением не превышающего 1000 В, имеющие емкость 2 и 3 нФ.

Необходимо помнить о том, что подбор диодов для диодного моста, а также конденсаторов необходимо осуществляться с запасом по напряжении. Осветительный прибор, собранный таким образом будет давать свечение немного меньшее по яркости, чем при использовании стандартного варианта подключения с использованием дросселя и стартера.

Схемы зажигания с ЭмПРА

Устройство с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С 1) и (С 2) в схеме предназначены для снижения уровня помех. Емкость (С 1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С 2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант – это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное
преимущество ее в том, что подобным образом можно запустить светильник не
только без дросселя, но и перегоревшую лампу, у которой вообще нет целых
спиралей на штырьковых контактах.

Для трубок
мощностью 18Вт подойдут следующие компоненты:

диодный мост GBU408

конденсатор 2нФ (до 1кв)

конденсатор 3нФ (до 1кв)

лампочка накаливания 40Вт

Для трубок в
36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна
подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

Составляющие люминесцентного светильника

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения может обеспечивать или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется после чего оно сглаживается параллельно подключенным конденсатором С 1 . После подключения к сети сразу заряжается конденсатор С 4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR 1 и транзисторах Т 1 и Т 2 . При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С 2 , С 3 , L 1 , подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Ремонт лампы. Видео

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик

Важно уметь выбирать подходящие модели и правильно их эксплуатировать

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Нити накала лампы.
  9. Ультрафиолетовое излучение.
  10. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать

Схема включения люминесцентных ламп

Полезно рассмотреть способы подключения светильников, к которым можно прибегнуть при отсутствии того или иного элемента:

Без дросселя

Дроссель, представляющий собой индуктивное сопротивление, можно заменить сопротивлением активным. В этом качестве может использоваться обычная лампочка накаливания, имеющая ту же мощность, что и люминесцентный светильник. Последний нужно подключить к сети через выпрямитель из двух диодов и двух конденсаторов, на выходе которого получается двойное напряжение.

Схема подключение люминесцентных ламп без дросселя и стартера

После включения питания и до того, как в лампе возникнет дуговой разряд, на ее электроды будет подано двукратное напряжение сети, что приведет к зажиганию. После пробоя межэлектродного промежутка в лампе установятся рабочие ток и напряжение, при этом в работу включится лампа накаливания.

Отметим, что при таком подключении лампа зажигается без предварительного разогрева электродов, что очень негативно скажется на сроке ее службы.

Без стартера

Другое решение — запитать лампу через удваивающий выпрямитель и ввести в схему стабилитроны. До зажигания лампы двукратное напряжение на выходе выпрямителя будет удерживать стабилитроны в открытом положении, вследствие чего под этим же напряжением окажутся электроды лампы.

После ее розжига напряжение упадет и работа удвоителя станет невозможной. Соответственно, закроются стабилитроны и напряжение в лампе станет рабочим (ограничивается дросселем).

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого – создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер – лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из В исходном состоянии электроды разомкнуты.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий