Питание от 220В без дросселя и стартера
Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.
Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ
Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели
Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.
Рекомендуем: Альтернативное отопление частного дома — системы отопления
Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.
На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:
Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.
Лампу накаливания использовать на 40-60 Вт, как показано на фото:
Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.
На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:
2
Подключение с электромагнитным балластом – классическая схема
Первые лампы дневного света включались через дроссель и стартер. Раньше это были отдельные устройства (в некоторых моделях так и сейчас) с гнездами в корпусе светильника для каждого. Схема также имеет 2 конденсатора. Один размещен в стартере – продлевает импульс, второй стабилизирует напряжение. Все оборудование называют электромагнитным балластом.
Этот тип подключения имеет несколько преимуществ:
прошел испытание временем и подтвердил надежность;простой;комплектующие недорогие по стоимости.
Практическое применение выявило многие недостатки, особенно по сравнению с электронной схемой подключения ЛДС:
потребляет на 15%!б(MISSING)ольше электричества;тяжелый осветительный прибор;долго включается, особенно когда стареет лампа;плохо работает на холоде;гудит дроссель, звук нарастает со временем;мерцает свет, что плохо сказывается на зрении.Схема для одной лампы
При монтаже вначале вставляют в гнездо стартер для соединения с нитями накаливания в колбе. К свободным контактам подключают дроссель. На сетевые провода параллельно устанавливают конденсатор.
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Тематическое видео: Подробно про умножитель напряжения
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость
Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.
В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.
Как загорается люминесцентная лампа?
Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:
- на электроды, расположенные на цокольных штырях, подаётся напряжение;
- высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
- ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
- после остывания стартерных контактов происходит их полное размыкание;
- самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
- проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
Лампы спецназначения
Основным назначением устанавливаемых конденсаторов является эффективное снижение помех
Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора
Блок 1
Запуск лампочек без стартера
Эта деталь электромагнитного балласта выходит из строя довольно часто, а в запасе не всегда есть новая. Чтобы и дальше пользоваться источником дневного света, можно вместо стартера поставить ручной прерыватель – кнопку, как это продемонстрировано на схеме:
Суть в том, чтобы вручную имитировать работу биметаллической пластины: сначала замкнуть цепь, обождать 3 секунды, пока прогреются нити лампы, а потом разомкнуть
Здесь важно правильно подобрать кнопку под напряжение 220 В, чтобы вас не ударило током (подойдет от обычного дверного звонка)
В процессе эксплуатации люминесцентной лампы покрытие вольфрамовых нитей постепенно осыпается, отчего они могут сгореть. Явление характеризуется почернением краевых зон около электродов и говорит о том, что светильник скоро выйдет из строя. Но даже с перегоревшими спиралями изделие остается работоспособным, только его надо подключить к электросети по такой схеме:
При желании газоразрядный источник света можно зажечь без дросселей и конденсаторов, используя готовую мини-плату от сгоревшей энергосберегающей лампочки, работающей по такому же принципу. Как это сделать, показано в следующем видео:
Недостатки
- Главный недостаток оборудования – присутствие в конструкции ртути. Поэтому с лампами нужно обращаться очень аккуратно.
- Эффективность работы светового оборудования данного типа зависит от внешней температуры. Световой поток будет уменьшаться при минимальных и максимальных температурах. Конечно же, при использовании в жилых помещениях этот факт неуместен.
- Высокая чувствительность люминесцентных приборов к частым отключениям электропитания создает некоторые неудобства, сокращается их срок службы. Поэтому не рекомендуется применять подобную систему освещения для объектов, помещений, где в сети постоянно возникают перепады напряжения, отключение электричества.
Проверка работоспособности системы
После подключения люминесцентной лампы следует убедиться в ее работоспособности и в исправности пускорегулирующих устройств. Для проведения испытаний понадобится тестер, с помощью которого проверяют катодные нити накала. Допустимый уровень сопротивления — 10 Ом.
Если тестер определил сопротивление как бесконечное, необязательно выбрасывать лампочку. Данный источник света еще сохраняет функциональность, но использовать его нужно в режиме холодного запуска. В обычном состоянии контакты стартера разомкнуты, а его конденсатор не пропускает постоянный ток. Иными словами, прозвон должен показывать очень высокое сопротивление, которое иной раз достигает сотен Ом.
После прикосновения щупами омметра дроссельных выводов сопротивление постепенно снижается до постоянной величины, присущей обмотке (несколько десятков Ом).
Достоверно определить межвитковое замыкание в дроссельной обмотке, используя обычный омметр, не получится. Однако если в приборе есть функция замера индуктивности и данные по ЭмПРА, несоответствие значений укажет на наличие проблемы.
Использование умножителей напряжения
Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.
Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.
Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.
Но, умножитель напряжения имеет один большой минус.
Мнение эксперта
Изосимов Владимир Николаевич
Электрик высшей категории. Специалист по осветительным приборам.
Задать вопрос эксперту
Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.
Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.
Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.
Предыдущая
ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп
Следующая
ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп
Подключение ЭПРА
Подсоединение ЭПРА (электронного пускового механизма)
Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.
В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.
Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:
- источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
- с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня
Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:
- Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
- Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
- Соединяем его проводами с гнездами ламп
- Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.
Достоинства и недостатки люминесцентных источников света
Использование ламп для тепличного выращивания растений
ПЛЮСЫ:
- Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
- Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
МИНУСЫ:
- Необходимость подключения дополнительных устройств (стартеров и дросселей)
- Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
- Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
- На силу света в таких источниках способна влиять температура окружающей среды
- Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
- значительная пульсация света, что может сказаться отрицательно на зрении
- Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных
Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.
Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.
Сравнение параметров разных источников освещения
Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.
Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.
Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:
Подключение ЭПРА
Подсоединение ЭПРА (электронного пускового механизма)
Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.
В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.
Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:
- источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
- с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня
Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:
- Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
- Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
- Соединяем его проводами с гнездами ламп
- Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.
Достоинства и недостатки люминесцентных источников света
Использование ламп для тепличного выращивания растений
ПЛЮСЫ:
- Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
- Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
МИНУСЫ:
- Необходимость подключения дополнительных устройств (стартеров и дросселей)
- Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
- Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
- На силу света в таких источниках способна влиять температура окружающей среды
- Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
- значительная пульсация света, что может сказаться отрицательно на зрении
- Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных
Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.
Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.
Сравнение параметров разных источников освещения
Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.
Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.
Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:
Схемы подключения
Узлами электронного балласта, наряду со схематической платой, считаются:
- Пусковой пороговый элемент.
- Диодный мост.
- Высокочастотный генератор (свыше 20 кГц).
- Разжигающая силовая LC-цепь.
- Динистор, обеспечивающий работу схемы от 18W до 36W.
Для вводного контура используются 3 основные клеммы: ноль, фаза и заземление, а для выхода – по 2 парных клеммы (для каждой лампы).
При включении прибора переменное напряжение поступает на диодный мост. Там оно выпрямляется с помощью фильтрующего конденсатора. К мосту производители устанавливают предохранитель и фильтр, предназначенный для электромагнитных помех. Напряжение поступает к генератору, работающему автоматически, и происходит генерация колебаний.
Связанный с транзисторами, по управляющим обмоткам возникают импульсы включения и выключения, расположенные в противоположных сторонах друг от друга. Они работают попеременно. Вместе их включать нельзя, так как прибор сгорит. Рабочая обмотка одним концом подключена к транзисторам, а другим – к дросселю LC цепи и конденсатору, и обеспечивает полное питание светильника от электрической сети.
Схема подключения балласта 2 х 36 В
Одновременно, в схеме начинается работа динистора, который открывается в диапазоне напряжений на определенное время, пока достигнет значений до 36 В. Более современные модели электронной пускорегулирующей аппаратуры работают на базе ШИМ-контроллеров, обладающих более устойчивыми характеристиками, но автогенераторная схема считается стандартной. Элементы схемы производителями подбираются таким образом, чтобы при выполнении основных функций они полностью входили в резонанс.
Подключать представленной схемой можно от одной и более 4-х ламп. Как проверить правильность работы схемы? Лучше всего если это выполнит электрик, инженер – люди со специальным образованием.
Варианты подключения люминесцентных ламп
Для светильников данного типа подбирают дорогие и дешевые модели, с двумя типами подключения – автогенераторным или с ШИМ-контроллерами. Дорогие ЭПРА более предпочтительнее – они имеют качественные опционные элементы, и сделаны таким образом, что потребляют меньшее количество электроэнергии.
Схемы подключения сходны между всеми вариантами. Сначала напряжение 220 В поступает к диодному мосту и фильтру, образуя на выходе напряжение до 310 В. Затем инверторный модуль наращивает частоту напряжения, который от него проходит к симметричному трансформатору. После этого управляющими ключами образуется рабочий потенциал, и люминесцентная лампа включается.
Пример схемы подключения можно посмотреть в этом видео
Как подключить люминесцентную лампу
Подключение к электронным модулям
Схему присоединения к модулям можно посмотреть в инструкции или на рисунке, расположенном на корпусе прибора
При подключении обращается внимание на то, что указанная мощность ЭПРА должна совпадать с мощностью лампы, иначе светильник не будет функционировать
С люминесцентными лампами Т4, Т5, Т8 работает прибор с указанной степенью защиты IP23. Если светильники устанавливаются во влажных помещениях, то для них берут устройства IP 44 и больше. В зависимости от конфигурации схемы, подключать можно одну и более ламп (2, 3, 4 и т.д.).
Двухламповая схема подключения люминесцентных ламп
На примере двух 18-ваттных люминесцентных ламп рассмотрим, что необходимо для подключения и как проводится работа. Схема подключения с указанием проводов приведена ниже.
Для подключения последовательно двух люминесцентных светильников вам понадобится:
- 2 люминесцентные лампы (в данном случае мощностью 18/20 Вт);
- Индукционный дроссель (для описанной схемы мощность 36/40Вт);
- 2 стартера S2 (4-22Вт).
Для начала к каждому из линейных люминесцентных светильников подключается параллельно стартер. Для этого необходимо задействовать по одному штыревому выходу с двух торцов каждой лампы. Оставшиеся свободными контакты подключаются последовательно, через индукционный электромагнитный дроссель, к сети электропитания.
Для того, чтобы компенсировать реактивную мощность, а также с целью снизить помехи, регулярно возникающие в любой в электросети, подключаются конденсаторы, параллельно запитывающим контактам ламп. Однако, имейте в виду, что контакты многих стандартных бытовых выключателей, особенно недорогих, могу залипать от высоких пусковых токов.
Водителям и автолюбителям часто приходится сталкиваться с решением вопроса — как проверить аккумулятор автомобиля на работоспособность. Существует несколько способов это сделать: как с помощью дополнительных приборов, так и без них.
О различных методах проверки генератора можно узнать отсюда. а правильно установить к домашней сети генератор поможет полезное руководство.
Современная пускорегулирующая аппаратура имеет небольшие габариты и устроена таким образом, чтобы не просто подключать светильники, но и обеспечивать надежность и безопасность работы схем, защиту от перепадов напряжения и других факторов. С помощью электронных схем можно реализовать подключение более сложных систем, например, подсветку рекламных стендов, организовывать освещение больших промышленных или складских помещений.
Также люминесцентные технологии и подключение линейных источников света используется в медицинских заведениях, офисных помещениях.
Тут пускорегулирующая аппаратура позволяет обеспечить бесперебойное освещение, безопасность, легкость и оперативность замены сгоревших (выработавших свой ресурс) ламп.
При этом особенности конструкции самих ламп и электронных современных дросселей обеспечивают высокую эффективность и экономичность использования таких технологий. Поэтому очевидна тенденция повсеместного перехода на современные экологичные и экономичные люминесцентные светильники.
Схемы и способы подключения не сложны, требуют минимум оборудования и доп. элементов, которые всегда находятся в открытой продаже.
Принцип действия
Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.
Как это происходит, можно понять на примере схемы.
Составляющие люминесцентного светильника
На ней можно увидеть:
- пускорегулирующий аппарат (стабилизатор);
- трубка лампы, включающая в себя электроды, газ и люминофор;
- слой люминофора;
- стартерные контакты;
- стартерные электроды;
- цилиндр корпуса стартера;
- пластинка из биметалла;
- наполнение колбы из инертного газа;
- нити накаливания;
- излучение ультрафиолета;
- пробой.
Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.