3 Основных момента при изготовлении мощного РН и тока своими руками
Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.
Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.
Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.
Варианты схем регулятора
Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В
Обозначения:
- Резисторы: R1- 470 кОм , R2 – 10 кОм,
- Конденсатор С1 – 0,1 мкФ х 400 В.
- Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
- Динистор DN1 – DB3.
- Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.
При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.
Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.
К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.
Схемы на основе симистора
Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.
Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.
Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:
- R1 — резистор 20 кОм, мощностью 0,25 Вт.
- R2 — переменный резистор 400−500 кОм.
- R3 — 3 кОм, 0,25 Вт.
- R4—300 Ом, 0,5 Вт.
- C1 C2 — конденсаторы неполярные 0,05 Мкф.
- C3 — 0,1 Мкф, 400 в.
- DB3 — динистор.
- BT139−600 — симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
- К симистору желательно применить радиатор, так как элемент довольно сильно греется.
Схема проверена и работает довольно стабильно при разных видах нагрузки.
Существует еще одна схема универсального регулятора мощности.
На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.
Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.
Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.
Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:
- R1 — резистор 3.9 кОм и R2 — 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
- конденсатор С1- 0,22 мкФ.
- динистор D1 — 1N4148.
- светодиод D2, служит для индикации работы устройства.
- динисторы D3 — DB4 U1 — BT06−600.
- клемы для подключения нагрузки P1, P2.
- резистор R3 — 22кОм и мощностью 2 вт
- конденсатор C2 — 0.22мкФ рассчитан на напряжение не меньше 400 В.
Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.
Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.
Рекомендации по изготовлению
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения
Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1
Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
Регулятор для индуктивной нагрузки
Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Существует два варианта решения проблемы:
- Подача на управляющий электрод серии однотипных импульсов.
- Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.
Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.
Рекомендации по проверке и наладке
Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником, то есть под нагрузкой. Вращаем ручку резистора — напряжение плавно изменяется.
В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка — подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.
Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора — взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя — сгорит индикатор.
Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность — 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.
Радиатор предотвратит перегрев устройства
Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.
2 основных принципа при изготовлении РН 0-5 вольт
- Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
- Питание микросхем производится только постоянным током.
Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.
Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:
Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.
Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.
Регулятор напряжения 0 — 220в
https://youtube.com/watch?v=swIo4WqPqjhY
Типы электродвигателей
Существуют разные ниши использования электродвигателей. В некоторых выгоднее применять один принцип основы работы подвижных частей устройства, у других — иной. Наиболее распространены следующие типы конструкций:
- Двигатели постоянного тока. В составе таких моторов предусматривается коллектор, подключающий в зависимости от угла поворота, одну из катушек на роторе, чтобы генерируемое ей поле начинало взаимодействовать с постоянными магнитами или обмотками возбуждения на статоре.
- Распространение подобные системы получили для относительно маломощных ниш применения, максимум у таких моторов составляет меньше мегаватта. Причина в подвижных щетках коллектора, которые замыкают контакты катушек во время работы двигателя.
- Каждое соединение вызывает возникновение искры, повышающей температуру металла проводников. Есть и большой плюс у подобных конструкций – он состоит в легкой управляемости скоростью вращения.
- Достаточно регулировать значение входящего напряжения на обмотки ротора. Основные ниши распространения двигателей постоянного тока лежат в области от детских игрушек, до электропоездов средней мощности.
Универсальный коллекторный двигатель
По конструкции он полностью аналогичен устройству мотора постоянного тока с единственным отличием – все магнитопроводы изготавливаются на основе технологии шихтования.
- Наибольшее распространение подобный тип двигателя получил в быту — болгарки, миксеры, стиральные машины, дрели, мясорубки, а также работа множества иной техники основывается на использовании коллекторных двигателей переменного тока.
- Популярность подобных моторов обуславливается легкостью регулировки быстроты вращения вала, даже в сетях переменного тока, используя обычное понижение входящего напряжения.
Еще одним плюсом такой системы служит «всеядность» двигателя. Коллекторный мотор может приводиться в действие током любого вида — и постоянным, и переменным.
Асинхронный электродвигатель
Основное распространение получил в промышленности – ему для работы нужна сеть питания переменного тока с несколькими фазами. Хотя, можно запустить его и с единой, создав вторую при помощи конденсатора.
Конструкция двигателя содержит несколько катушек на статоре, работающих на разных фазах. Роторы у асинхронных двигателей бывают нескольких типов. Основными считаются короткозамкнутые и фазные.
Последний отличается наличием дополнительных, подключаемых к сети питания катушек, размещаемых на нем же.
- Преимущество первой конструкции — нет скользящего контакта, ротор магнититься за счет возникающих внутри него вихревых токов. Вторая имеет плюс в возможности тонкой регулировки скорости оборотов.
- Еще одним плюсом следует считать возможность запуска напрямую, от трехфазовой сети переменного напряжения. Мощность у подобных моторов, при необходимости, гораздо выше, чем у их коллекторных аналогах. У последних, при похожих токах, сгорали бы обмотки ротора.
В быту асинхронные двигатели представлены слабо. Обычно они используются в системах, где не требуется регуляция скорости — насосах, вытяжках, холодильниках и аналогичных устройствах.
Или же применяют векторное управление. Но, последнее, достаточно сложно конструктивно за счет содержащегося в его составе микроконтроллера, набора датчиков, инвертора, и тому подобных элементов, в своей массе увеличивающих стоимость конечного аппарата.
Синхронный электродвигатель
Отличается от асинхронного наличием обмоток на роторе. В то же время, электромагниты на статоре могут быть заменены на свой постоянный тип. Работает за счет частоты смены фазовых напряжений на разных обмотках, которая может быть получена как от сети, так и генерироваться полупроводниковой управляющей схемой. Контроль скорости, в настоящем типе двигателя, можно выполнить только понижением или повышением приходящих герц на витки катушек.
Популярность синхронные двигатели набрали за счет своей надежности, и постепенно вытесняют свои коллекторные и асинхронные аналоги. Выход из строя одной сборки управляющей контуром (а для каждой из обмоток она своя), или самой катушки, не приведет к поломке всего мотора. Тем более, что стоимость производства полупроводниковых, управляющих компонентов устройства, все время снижается.
Кроме описанных, есть электродвигатели работа которых строится на немного других принципах. К примеру, вентильно-индукторные с самовозбуждением (ВИД, ВИП, ВИМ), или использующие независимое (НВ) создание электромагнитного поля. Встречаются они достаточно редко и смысла в описании систем регуляции скорости для них нет.
Модели с плавным пуском
Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.
Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.
Меры безопасности
Весь процесс сборки самодельного регулятора мощности должен происходить строго по схеме и инструкции при соблюдении правил безопасности.
Диммер работает при высоком напряжении в 220 вольт, в целях безопасности не касайтесь устройства инструментом, а тем более голыми руками.
Однако знайте, что от фланца и, соответственно, симистор током не бьёт – проверено на личном опыте.
Работоспособность диммера следует проверять на лампах накаливания мощностью от 60 до 80 Вт.
Подключать энергосберегающие, светодиодные или другие лампы, в которых включены пусковые устройства и импульсные преобразователи не рекомендуется.
Схемы на симисторах
Не всегда требуются сложные схемы для регулировки температуры паяльника. Но просто поставить регулятор после вилки — не слишком хорошая идея. Он будет регулировать (если параметры подберете соответствующие), но и греться будет почти как паяльник. Потому даже самые простые регуляторы мощности содержат что-то около десятка компонентов. Ниже приведена одна из самых простых схем. Все что в этой схеме есть — симистор и динистор. Симистор нужен ВТ139, динистор DB3. Маркировка выводов симистора также дана не схеме, обозначено какие ноги к чему паять.
Схема простого регулятора температуры паяльника на 220 В на симисторе
Схема совсем небольшая, с легкостью помещается в корпус от телефонной зарядки. Не сказать, что данный регулятор идеален, но он вполне успешно работает с паяльниками не слишком большой мощности. Предел возможностей — 1500 Вт.
Симистор КУ208Г и десяток деталей
Похожая схема есть на симисторе, похожая в смысле простоты и набора элементов. Симистор также монтируем на радиатор. Имеет тот же недостаток — помехи, которые точно так же устраняется.
Схема регулятора паяльника на симисторе
Диодный мост собирается как обычно, на базе КД906Б. Все номиналы радиоэлементов прописаны на схеме, никаких проблем с реализацией быть не должно.
Пролог
Я уже описывал конструкцию Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных двигателей, но всё же не так хорошо, как бы этого хотелось.
В связи с ремонтом подобных регуляторов, я испытал одну из схем, которая оказалось более помехоустойчивой и простой в настройке, чем описанная ранее.
Но, расскажу обо всём по порядку.
Так вот, пришлось мне ремонтировать электропроводку вдали от родного дома. А именно, нужно было поменять выключатели с регуляторами мощности, или, как их там называют, диммеры (Dimmer).
В магазине новые выключатели с индикацией и регулировкой мощности стоили слишком дорого (45$ до налога). Так что, было решено временно заменить их более дешёвыми и менее функциональными выключателями, а неисправные диммеры отремонтировать. Ну, а так как на месте не было ни радиодеталей, ни необходимого инструмента, пришлось привести их домой. Вот в связи с этими мытарствами и родилась статья.
Приехав домой, я первым делом купил на местном радиорынке симисторы подходящей мощности BT139-800 всего по 0,65$ за штуку и вычертил электрическую схему диммера.
Основные функции регулятора оборота
Использование подобных преобразователей позволяет достичь многих целей, а именно:
- возможность ступенчатого разгона и снижения оборотов электродвигателя, что ведет к уменьшению нагрузок и меньшему потреблению электрической энергии;
- можно осуществить плавный запуск, а при мгновенном максимальном разгоне мотор получает сверхвысокие нагрузки, перегрев обмотки и иных приводов;
- как средство дополнительной защиты электронных механизмов;
- сокращение расходов на техобслуживание силовых агрегатов и насосов, так как снижаются риски поломок привода, а также отдельных механизмов.
Без похожих встроенных устройств не обходятся сварочные аппараты, стабилизаторы напряжения, ПК, телевизоры и т.д.
Основные советы мастерам
Перед тем, как подобрать наиболее эффективный вариант регулятора, стоит учесть некоторые подсказки:
- одним из важнейших критериев при выборе является мощность, которая должна превышать либо соответствовать данным на используемом приборе или агрегате;
- для коллекторных двигателей чаще выбирают векторные регуляторы, но скалярные более надежны;
- напряжение должно соответствовать допустимому диапазону;
- проводки выбираются не слишком длинные;
- надежное запаивание мест соединения и хорошая изоляция;
- так как основным предназначением устройства является преобразование частоты, данный аспект выбирается в соответствии с теми или иными техническими требованиями.
Получается, что при старании можно и снизить уровень шума вентилятора у ПК, уменьшив напряжение и число оборотов при помощи транзистора и двух резисторов.
Такая работа по сборке простого контроллера полезна для получения дополнительных полезных навыков, к тому же, поможет сэкономить деньги.
Плюсы и минусы
К плюсам подобного устройства относятся:
- Высокое быстродействие – устройство, благодаря наличию обладающих высокой скоростью переключения симситоров, способно очень быстро реагировать на скачки напряжения в сети, сглаживая их до необходимого значения;
- Широкий диапазон входного напряжения – стабилизаторы данного типа способны работать при значениях входного наряжения от 95 до 275 В (для однофазной модели), от 260 до 470-471 В ( для трехфазных стабилизаторов);
- Высокая точность стабилизации – выходное напряжение, выдаваемое такими устройствами, имеет максимальное колебание в пределах 1,5 % (3,3-5,7 В), что не оказывает отрицательного влияния на работу подключенных к нему приборов.
- Контроль значений входной и выходной разности потенциалов с погрешностью не более 0,5%;
- Высокое КПД – благодяря использованию симистора, значение данного показателя у большинства моделей достигает 95-97%;
- Бесшумность – отсутствие в конструкции стабилизатора релейных переключателей и подвижных контактов позволяет работать ему практически бесшумно;
- Небольшие размеры – собранные на симисторах стабилизаторы, по сравнению с релейными, имеют небольшие размеры и могут быть компактно размещены на полу или стене даже самого небольшого помещения;
- Длительный срок эксплуатации – большинство современных качетвенных моделей могут нормально выполнять свои функции в течение 10 и более лет;
- Большая мощность – разлиные модели способны обеспечить нормальную работу подключаемых приборов и оборудования суммарной мощностью от 3 до 10 кВт.
К минусам таких стабилизаторов относятся:
- Высокая стоимость – качественные модели стабилизаторов имеют достаточно высокую, не всегда доступную для многих владельцев квартир и домов стоимость.
- Скачкообразное изменение разности потенциалов на выходе устройства – данный недостаток характерен для недорогих моделей китайского производства. В более дорогостоящих аналогах правтически не проявляется.
На заметку. Несмотря на высокую стоймость таких устройств, их приобретение при проблемах с напряжением в сети будет очень выгодным и окупится достаточно быстро – при остуствии стабилизатора могут произойти серьезные поломки чувствительной бытовой техники, насосоного и отопительного оборудования. В некоторых случаях подобные скачки не просто портят подключенные к сети приборы, а выводят их из строя, что влечет их замену, приводя к незапланированным и занчительным финансовым расходам и другим неудобствам.