Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду
Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Как правильно подключить светодиод к бортовой сети.
Для правильной работы светодиода необходимо ограничить ток протекающий через него.
Для этого, к бортовой сети светодиод подключается последовательно с токоограничивающим резистором. Необходимость в ограничении тока обосновывается зависимостью срока службы светодиода от проходящего тока, чем он выше тем меньше срок службы. Но следует отметить, что зависимость эта нелинейная и при превышении определенного рекомендованного порога (смотрите Datasheet на вашу модель) диод выходит из строя.
На рисунке приведены несколько вариантов включения светодиодов с резисторами а так же указаны какие из включений являются оптимальными, какие правильными но менее оптимальными в плане энергопотребления, а какое неправильное и приведет к значительному сокращению срока службы светодиодов. С вариантом схемы включения определились, теперь предстоит выяснить какой резистор нужен для светодиода.
Онлайн калькулятор: “Расчет резистора для светодиода”.
Формула для расчета резистора выглядит следующим образом: R= (Uпит – (Uпр.св* N))/I
Где: Uпит- напряжение источника питания Uпр.св- прямое напряжение на светодиоде, N-количество светодиодов, I- ток проходящий через светодиод. Естественно возникает вопрос где взять эти данные? Для тех кто решил махнуть рукой т.к. не знает ничего о названии и происхождении добытых диодов,- скажу не спешите, чуть ниже будет дано универсальное решение вашего вопроса.
Давайте рассмотрим в качестве примера Datasheet на 3 миллиметровый светодиод фирмы kingbright
На рисунке ниже скриншот с указанием характеристик светодиода при силе тока проходящего через него 2 мА при температуре 25С. Из всех представленных характеристик нас интересует лишь Forward Voltage – прямое напряжение на светодиоде.
- мощности
- импульсного тока
- прямого постоянного тока (DC Forward Current) именно это значение нас и интересует, в данном случае нельзя допускать прохождение тока выше 25 миллиампер
(при температуре 25 градусов по Цельсию).
Последний рисунок иллюстрирует зависимость характеристик от условий использования:
- зависимость прямого напряжения от проходящего тока
- зависимость интенсивности светового потока от проходящего тока
- зависимость проходящего тока от температуры
- зависимость интенсивности светового потока от от температуры
Исходя из полученных в Datasheet данных можно сделать вывод, что оптимальным является значение проходящего тока от 2 до 10 миллиампер, при этом типовое значение прямого напряжение на выводах светодиода составляет от 1,9 до 2 Вольт.
Пример расчета №1
Если ввести в онлайн калькулятор напряжение бортовой сети 12 (В), значение тока 2 (мА), значение прямого напряжения 1,9 (В) количество светодиодов 1 получим расчетное значение резистора = 5050 Ом Ближайший производственный номинал резистора 5100 Ом или 5,1 кОм маркировка отечественных резисторов 5к1 маркировка smd резистора 512
Пример расчета №2
Если ввести в калькулятор напряжение бортовой сети грузовика 24 (В), значение тока 10 (мА) светим по полной:), значение прямого напряжения 2 (В) количество светодиодов 3 (маленькая гирлянда получилась) расчетное значение резистора = 1800 Ом Ближайший производственный номинал резистора 1800 Ом или 1,8 кОм маркировка отечественных резисторов 1к8 маркировка smd резистора 182
Рекомендации по подключению светодиодов с неизвестными характеристиками:
Светодиодные элементы все чаще применяются в сферах деятельности человечества как осветительные приборы для помещений, в уличных фонарях, карманных фонариках, при освещении аквариума. В автомобильной индустрии группы светодиодов широко используются для подсветки габаритных огней, стоп сигналов и поворотов.
Внешний вид светодиодов
Отдельными элементами с различными цветами обеспечивают подсветку приборной панели, индикацию понижения уровня охлаждающей жидкости радиатора. Невозможно перечислить все направления их использования: от украшения новогодней елки, подсветки аквариума до приборов ракетно-космической техники.
Они постепенно вытесняют обычные лампы накаливания. Многочисленные Интернет магазины в режиме онлайн продают светодиодные ленты и другие осветительные приборы. Также можно найти калькулятор расчета схем драйверов для них, если появится необходимость их ремонта или изготовления своими руками. Такому бурному развитию есть целый ряд причин.
В каких случаях допускается подключение светодиода через резистор?
Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.
Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.
Расчет для мощного светодиода
В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.
Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.
Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0.05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:
R = (U — Umin) / I
Проводим элементарное вычисление, в ходе которого выясняем, что:
R = (12 — 3.1) / 0.05 = 178 Ом.
Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.
Таблица подбора резистора с максимально приближенным значением сопротивления
Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.
Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:
R = 178 + (178 × 0.15) ≈ 205 Ом.
Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.
https://youtube.com/watch?v=4jAnsqTsfNU
Параллельное соединение
Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:
R = (Uист — Uн) / (n ⋅ Iн)
P = (n ⋅ Iн)2 ⋅ R
Где n – количество параллельно включенных ЛЕДов.
Почему нельзя использовать один резистор для нескольких параллельных диодов
Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.
В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.
Пример правильного подключения резистора
Расчет резистора для светодиода
Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.
Вычисление номинала сопротивления
Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.
Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.
Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку
Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике
Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:
- Инфракрасный — до 1.9 В.
- Красный – от 1.6 до 2.03 В.
- Оранжевый – от 2.03 до 2.1 В.
- Желтый – от 2.1 до 2.2 В.
- Зеленый – от 2.2 до 3.5 В.
- Синий – от 2.5 до 3.7 В.
- Фиолетовый – 2.8 до 4 В.
- Ультрафиолетовый – от 3.1 до 4.4 В.
- Белый – от 3 до 3.7 В.
Рисунок 1 – схема подключения светодиода
Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.
Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:
R = U (R)/ I,
где, U (R) — падение напряжения на резисторе
I – ток в цепи
Расчет U (R) на резисторе:
U (R) = E – U (Led )
где, U (Led) — падение напряжения на светодиодном элементе.
С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.
Подбор мощности резистора
Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.
Расчет резистора при последовательном соединении светодиодов
В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.
Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.
Сопротивление резистора определяется по формуле:
R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.
- Uн.п – напряжение питания, В;
- Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
- Iд – рабочий ток светодиода, А.
Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.
Примеры расчетов сопротивления и мощности резистора
Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.
Cree XM–L T6
Cree XM–LLEDLEDLEDLED
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.
Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.
Мощность, рассеиваемая резистором, составит:
Вычислим КПД собранного светильника:
Пример с LED SMD 5050
SMD светодиода 5050
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.
Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.
Вольтамперная характеристика светодиода (ВАХ)
Светодиод – нелинейный элемент электрической цепи, его ВАХ по форме практически идентична обычному кремниевому диоду. На рисунке 1 приведена ВАХ мощного белого светодиода, одного из ведущих мировых производителей.
Рисунок 1
По графику видно, что при увеличении напряжения всего на 0,2 В (например, участок 2,9…3,1 В), сила тока увеличивается более чем в два раза (с 350 мА до 850 мА). Справедливо и обратное: при изменении тока в достаточно широких пределах, падение напряжения изменяется весьма незначительно
Это очень важно
Второй важный момент – падение напряжения от образца к образцу в одной партии может отличаться на несколько десятых долей вольта (технологический разброс). По этой причине источник питания светодиодов должен иметь стабилизацию по току, а не по напряжению. Световой поток, кстати, нормируется также в зависимости от прямого тока. Теперь посмотрим, как эта информация пригодится при выборе схемы подключения.
Последовательное соединение (рисунок 2).
Рисунок 2
На схеме показано последовательное включение трех светодиодов HL1…HL3 к источнику постоянного тока J. Для простоты возьмем идеальный источник тока, т.е. источник, обеспечивающий постоянный ток одинаковой величины, независимо от нагрузки. Поскольку сила тока в замкнутом контуре одинакова, через каждый элемент, последовательно включенный в этот контур, протекает ток одинаковой величины I1=I2=I3=J. Соответственно обеспечивается одинаковая яркость свечения. Разница в падениях напряжения на отдельных светодиодах не имеет в этом случае никакого значения и отражается только на величине разности потенциалов между точками 1 и 2.
Рассмотрим конкретный пример расчета подобной схемы. Пусть требуется обеспечить питание трех последовательно включенных светодиодов током 350 мА. Падение напряжения при этом токе по данным производителя может составлять значение от 2,8 В до 3,2 В.
Рассчитаем требуемый диапазон выходного напряжения источника тока:
Umin=2,8×3=8,4 В;
Umax=3,2×3=9,6 В.
Максимальная мощность потребляемая светодиодами составит P=9,6×0,35=3,4 Вт.
Таким образом источник должен иметь следующие параметры:
Выходной стабильный ток – 350 мА;
Выходное напряжение – 9 В ±0,6В (или ±7%);
Выходная мощность – не менее 3,5 Вт.
Все предельно просто.
Серийно выпускающиеся источники питания для светодиодов (драйверы) обычно имеют более широкий диапазон выходного напряжения, чтобы разработчик светотехнического устройства не был привязан к конкретному количеству излучающих диодов, а имел некоторую свободу действий. В таком случае можно к одному и тому же источнику подключать последовательно, например, от 1-го до 8-ми светодиодов.
Тем не менее, последовательная схема включения имеет свои недостатки.
- Во-первых, при выходе из строя одного из диодов в цепи – по понятным причинам гаснут и все остальные. Исключение – короткое замыкание светодиода – в этом случае цепь не обрывается.
- Во-вторых, при большом количестве светодиодов, сложнее реализовать низковольтное питание.
Например, в случае если стоит задача запитать 10 светодиодов последовательно (это падение напряжения порядка 30 В) от автомобильного аккумулятора, то без повышающего преобразователя не обойтись. А это уже дополнительные затраты, габариты и снижение КПД.
Параллельное соединение (рисунок 3).
Рисунок 3
Рассмотрим теперь параллельное соединение тех же светоизлучающих диодов.
Согласно первому закону Кирхгофа:
J=I1+I2+I3,
Чтобы обеспечить каждому светодиоду одноваттный режим (I=350мА), источник тока должен выдавать 1050 мА при выходном напряжении порядка 3 В.
Как уже говорилось выше, светодиоды имеют некоторый технологический разброс параметров, поэтому на самом деле токи поделятся не поровну, а пропорционально своим дифференциальным сопротивлениям.
К примеру, если прямое падение напряжения, измеренное на этих светодиодах при токе 350 мА, составляло 2,9 В, 3 В, 3,1 В для HL1, HL2 и HL3 соответственно. То при включении по представленной схеме токи распределятся следующим образом:
I1≈360 мА;
I2≈350 мА;
I3≈340 мА.
Это значит, что и яркость свечения будет разная. Для выравнивания токов в такие цепи обычно последовательно светодиодам включают резисторы (рисунок 4).
Рисунок 4
Выравнивающие резисторы увеличивают потребляемую мощность общей схемы, а следовательно снижают эффективность.
Такой способ соединения чаще всего применяют с низковольтными источниками питания, например в портативных устройствах с электрохимическими источниками тока (аккумуляторами, батарейками). В других случаях рекомендуется соединить светодиоды последовательно.
Зачем нужен резистор?
Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.
В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.
Как подключить сопротивление к светодиоду