Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Как происходит подключение лампочек последовательно или параллельно
Чтобы понять, как подключать лампочки — последовательно или параллельно — важно рассмотреть преимущества и недостатки обоих соединений, которые выплывают только на практике. Наиболее часто встречающийся вариант — последовательное и параллельное включения комбинируются по-разному
Наиболее часто встречающийся вариант — последовательное и параллельное включения комбинируются по-разному
Последовательно
Подобное соединение редко применяется в квартирах или домах. Для бытового использования больше подходит смешанный способ. Последовательно соединяют лампочки, если сооружают гирлянду или монтируют свет в длинном коридоре.
При подключении лампочек друг за другом следует учитывать некоторые особенности:
- через устройства будет протекать ток одинаковой силы;
- если произойдет резкий спад напряжения, воздействие распределится равномерно на все объекты цепочки;
- также равномерно распределяется мощность на каждый элемент цепи.
Параллельное и последовательное соединение силовых полупроводниковых приборов (СПП)
Максимальные токи и напряжения блокировки производимых сетей СПП ограничены, и часто бывает необходимо подключать СПП одного типа группами для увеличения мощности разрабатываемого оборудования.
Основные типы соединений:
- Параллельный — используется, когда необходимо увеличить максимальный ток;
- Последовательный — используется, когда необходимо увеличить максимальное напряжение блокировки;
- Смешанный — параллельный + последовательный.
При параллельном подключении тиристоров или диодов необходимо добиваться равного распределения тока нагрузки между устройствами. Необходимо обеспечить идентичность режимов работы СЭС и равенство вольт-амперных характеристик с учетом технологического разброса параметров.
Для решения этой задачи необходимо следующее:
- Установите индуктивные или омические делители тока последовательно с каждым полупроводниковым прибором;
- Сделайте выбор полупроводниковых приборов на статические потери в рабочей точке (исходя из значения U tm / U fm при рабочем токе). Следует отметить, что всегда существует определенное технологическое размытие параметров SPP;
- При проектировании преобразователей с параллельным включением полупроводниковых приборов рекомендуется выбирать рабочие токи выше точки разворота вольт-амперной характеристики PSD.
В этом случае выравнивание токов в параллельных ветвях будет происходить автоматически, так как в характеристической области I — V, расположенной выше точки инверсии, действует отрицательная обратная связь, то есть при повышении температуры pn перехода увеличивается его сопротивление la и уменьшается прямой ток, что приводит к снижению температуры перехода pn; - Для минимизации влияния времени зажигания отдельных тиристоров и, как следствие, неравномерного распределения тока по ветвям в начальный момент необходимо использовать мощные управляющие импульсы с крутым фронтом, что приводит к уменьшению времени задержки при включении тиристора и минимизировать влияние этого эффекта на распределение тока по параллельным ветвям;
- В схемах, где используются высокомощные высоковольтные тиристоры; тиристоры, выполненные на кристаллах больших диаметров (более 56 мм), а также при наличии в силовой части больших индуктивностей, ограничивающих скорость изменения силового тока, также необходимо учитывать время распространения активного состояния тиристора. Это связано с тем, что в начальный момент времени мощные тиристоры включаются на ограниченном участке вблизи управляющего электрода, после чего происходит продольное распространение состояния зажигания за ограниченное время;
- Конструктивное расположение параллельных ветвей должно гарантировать равенство сопротивлений токоведущих шин, в том числе предохранителей;
- Для всех агрегатов, соединенных параллельно, условия охлаждения должны быть одинаковыми.
При последовательном соединении тиристоров или диодов необходимо добиваться равного распределения напряжения блокировки (прямого и (или) обратного) как в установившемся режиме, так и в динамическом режиме, то есть при включении тиристоров и когда свойства блока сбрасываются при выключении тиристора или диода.
Причины неравномерного распределения блокирующих напряжений:
- Различия в потерях в устройствах, соединенных последовательно, из-за естественных технологических изменений и / или различных рабочих температур, например, из-за различных условий охлаждения (примечание: в среднем изменение температуры на 8 ° C приводит к двойному изменению потерь).
Перенапряжение возникает на устройствах с меньшим током утечки; - Распространение времени зажигания одиночного тиристора, включенного последовательно в ответвлениях, приводит к перераспределению напряжения между ранее активированными и задержанно активированными тиристорами.
Перенапряжение возникает на тиристорах, которые включаются с задержкой; - Разброс значений заряда обратного восстановления в последовательно соединенных устройствах приводит к тому, что в момент сброса такие устройства получают обратное напряжение в разное время. Перенапряжение возникает на тиристорах, которые имеют меньший заряд обратного восстановления.
Подборка диодов и расчёт БП
СД ленту подключают к блоку питания напряжением 24, 12 или 6 вольт. Их потребность в мощности приведена в таблице. Светодиод марки SMD Мощность (Вт.) Количество сд (шт.) 3528 4,8 60 3528 7,2 120 3528 16,0 240 5050 7,2 30 5050 14,0 60 5050 25,0 120
Сначала уточняют, сколько потребляет 1 м ленты. Например, две 5-и метровые используют 72 ватта. Эксплуатационный запас блока должен иметь 30%. Для работы длиной в два раза большей типа 5050 c 30 светодиодами необходимо выбрать БП мощностью 93,6 ватта.
Существуют основные типы этого устройства.
- Герметичный, компактный в корпусе из пластика. Защищён от влаги. Предел его мощности 75 ватт. Для двух лент необходимы 2 блока питания по 50 Вт. Из-за небольших размеров БП используют при монтаже интерьерной подсветки.
- Такой же тип в алюминиевом корпусе. Его 100 Вт мощности достаточно для эксплуатации двух лент. Имеет больший вес (1 кг) и габариты. Подходит к подсветке уличных указателей. Защищён от дождя, солнечных лучей, колебаний температуры, мороза.
- Открытый БП. При 100 Вт мощности обладает большим весом и размерами. Редко используют для подсветки стен и потолков из-за сложности найти свободное место. Устанавливают в отдельном шкафу. Стоимость более низкая.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации
Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока
При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Как сделать правильный расчет сопротивления для светодиода?
Можно выделить три основные методики: при помощи онлайн калькулятора, расчет при помощи программы, установленной на компьютер и вычисление сопротивления резистора самостоятельно при помощи формул.
Расчет онлайн
Использовать калькулятор, который можно найти в интернете на многих сайтах применяемого при расчете необходимого параметра сопротивления. В этом случае вводятся паспортные данные светодиода, количество последовательно соединенных приборов и напряжение источника питания.
По справочнику узнать следующие параметры:
- номинальное напряжение полупроводника;
- рабочий ток светодиода.
Ввести все необходимые данные в готовую форму.
Получить готовый номинал ограничительного сопротивления и его мощность.
Расчет с помощью калькулятора
Есть программы вычисления данных сопротивления для ограничения прямого тока светодиода, которые можно приобрести в электронных магазинах, на оптических дисках или скачать с бесплатных сайтов. Установить калькулятор на компьютер. Определить напряжение питания цепи и количество последовательно соединенных светодиодов.
- Запустить программу.
- Ввести исходные данные.
- Получить сопротивление для резистора и его мощность рассеивания.
Расчет вручную
Для расчета вручную нужно вспомнить закон Ома: I = U / R . Узнать исходные данные:
- напряжение источника питания;
- его прямой ток;
- прямое напряжение прибора;
- определиться с количеством элементов в цепи и со схемой их включения.
Наиболее распространены две схемы питания светодиодов:
Расчета схемы последовательного соединения светодиода и резистора.
Сумма напряжений на светоизлучающем приборе VD 1 и на сопротивлении R 1 должно равняться напряжению источника питания — U пр. Ток, проходящий через светодиод и через резистор – равны между собой — I пр.
Исходные данные: U пр=3В, I пр=20мА, U ип-12В.
Рассчитать напряжение на R 1: U R 1 = U ип- U пр. U R 1 =12-3=9В.
Имея эти данные можно высчитать сопротивление ограничительного сопротивления в цепи: R 1= U R 1/ I пр. R 1=9/0,02=450Ом.
Сопротивление в цепи ставят для ограничения проходящего тока, при этом выделяется тепло
Важной характеристикой резистора является параметр «рассеиваемая мощность». Если ее недостаточно, то происходит перегрев элемента, подгорание и изменение параметров вплоть до разрушения, что приведет к неисправности цепи. Поэтому необходимо рассчитать и мощность рассеивания: P = I * U
Поэтому необходимо рассчитать и мощность рассеивания: P = I * U
P R 1 =0,02*9=0,18Вт
Поэтому необходимо рассчитать и мощность рассеивания: P = I * U . P R 1 =0,02*9=0,18Вт.
В результате расчетов получится, что для устойчивой работы прибора с параметрами U пр=3 В, I пр=20 мА в цепи с источником постоянного тока напряжением 12 вольт необходим резистор сопротивлением 450 Ом мощностью 0,18Вт.
Расчета для схемы последовательного соединения резистора и трех светодиодов.
Подобный расчет можно провести и для цепи с последовательно соединенными одним сопротивлением и тремя светоизлучающими элементами. Их количество может быть произвольным, но при условии, что сумма напряжений на них не менее напряжения источника питания.
Все приведенные выше расчеты справедливы и для этой схемы. Разница лишь в том, что для питания трех последовательно соединенных элементов будет необходимо не 3 вольта, а в три раза больше. Для питания трех светодиодов требуется 9 вольт, а на резисторе будет падение напряжения: U R 1= U ип — ( U VD 1+ U VD 2+ U VD 3 ). Получается 3 вольта. Ток в цепи не изменится, потому, что через три последовательно соединенных светодиода будет проходить тот же ток — I пр=20мА.
Изменятся соответственно и параметры резистора. R 1= U R 1/ I пр. R 1=3/0,02=150Ом.
Мощность тоже поменяется: P R 1 =0,02*3=0,06Вт.
Для тех, кто не очень хорошо знаком с резисторами: промышленность выпускает резисторы с определенными номиналами. Если требуется элемент с такими данными – 50Ом, 0,18Вт, а их в наличии нет, тогда можно использовать 51Ом, который есть в линейке номиналов и 0,25Вт, что выше требуемого значения и подойдет не хуже расчетного значения.
Также можно подобрать нужное значение, соединяя элементы последовательно или параллельно. При последовательном соединении значения сопротивления суммируются. При параллельном – рассчитывается по специальной формуле.
Альтернативой пассивным элементам в схеме ограничения тока можно отметить стабилизаторы тока, которые намного сложнее, но работа их более надежна и экономична.
Напряжение питания светодиодов
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.
Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
Теоретический метод
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.
Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.
В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.
Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.
В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.
Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Ошибки при сборке схемы и подключении выключателя
Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.
В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.
1 of 2
При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?
Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.
Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.
При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».
А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.
В то время как большей, практически потухнет. Все как и было описано выше.
Что значит подключить осветительные устройства параллельно
Что кроется в понятии «параллельного соединения»? При такой схеме лампа соединяется с фазой и нулём. Если требуется подключить сразу два источника света, то подающие на них ток провода скручиваются. Тут главное проверить, чтобы сечение проводов совпадало с идущей на них нагрузкой. Не все светильники имеют сходное напряжение, яркость их изначально закладывается производителем. Если одна из лампочек перегорает, все остальные продолжают функционировать по-прежнему.
Существует несколько разновидностей параллельного подключения:
Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры. Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу.
Последовательное подключение
Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее.
Через все элементы схемы течёт ток одинаковой величины:
А падения напряжений суммируются:
Исходя из этого, можно сделать выводы:
- объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
- при выходе из строя одного светодиода произойдёт обрыв цепи;
- количество светодиодов ограничено напряжением БП.