Условные обозначения конденсаторов
В России существует система условных графических обозначений, включающая УГО конденсатора. Визуальной репрезентации этих устройств, а также резисторов посвящен отдельный ГОСТ, входящий в Единую систему конструкторской документации. Используются также международные стандарты – IEEE.
Конденсатор с постоянной емкостью
Такие элементы выпускаются с поляризацией и без нее. Неполяризованные изделия мелкого размера имеют широкую сферу применения, их можно подсоединять в разных направлениях. На схеме их обозначают двумя параллельными короткими черточками, находящимися под прямым углом к линиям соединения. На корпусе устройства указывают его емкость, нередко без единиц измерения (0,1 – это 1 микрофарад).
Код номера конденсатора
Первая пара знаков показывает емкость, цифра следом за ними – количество нулей. Единица измерения – пикофарад. Иногда на такой маркировке присутствуют буквы, они обозначают допуск в процентах и номинальное напряжение.
Поляризованные конденсаторы
Самым распространенным типом полярного конденсаторного элемента является электролитический. Такие изделия выпускаются в форме цилиндров или в осевом исполнении. Первый вариант несколько компактнее и дешевле. Выводы у него находятся с одной из сторон, тогда как у осевых вариантов – на разных. Поскольку устройства относительно крупные, на их корпусах указываются номинальное напряжение (оно у них относительно низкое) и емкость.
Важно! При подключении этих изделий необходимо строго соблюдать полярность, иначе они могут выйти из строя или даже взорваться. Так в схемах показывают поляризованные элементы
Танталовые конденсаторы
Эти изделия крайне компактны, ставят их в тех случаях, когда важно минимизировать габариты. В прошлом их маркировали двумя цветными полосами (каждый цвет соответствовал цифре) и пятнышком белого или серого цвета (в первом случае значение полос в микрофарадах делили на 10, во втором – на 100). Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс»
Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров
Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс». Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров.
Переменные конденсаторы
Из-за очень малой емкости эти детали имеют узкую сферу применения – в основном они используются в радиосхемах. Графически переменные элементы изображаются традиционным символом из пары коротких параллелей, зачеркнутых наклонной стрелой. Емкость указывают не четкой цифрой, а диапазоном.
Конденсаторы-триммеры
Это суперминиатюрные изделия, монтируемые прямо на печатную плату. Поскольку показатель емкости меняется только при настроечных работах, такие элементы получили название подстроечных. Графическое представление отличается от стандартного для переменных конденсаторов только тем, что вместо острия стрела снабжена перпендикулярной черточкой.
Это изделие с двухслойным строением и довольно большой емкостью (до 10 Ф). На границе электродной поверхности и электролита у таких устройств возникает пространство статичных носителей заряда. В отличие от электролитических вариаций, способ хранения энергии здесь – электростатическое поле. Сочетание большой площади поверхности и малой толщины пространства обеспечивает столь высокий показатель емкости. Обозначается как символ конденсаторного элемента с перпендикулярной ему вертикальной линией, помещенный в круг. При этом в верхней правой и нижней левой четвертях, на которые символ и вертикаль делят круг, находятся линии, сходные с графиком полусинусоиды.
Как определить номинал и напряжение
Очень многие производители не указывают на своих изделиях такие основные для любого конденсатора характеристики, как рабочее напряжение и номинал (номинальная емкость).
Определение номинала данных электронных компонентов производится следующими способами:
С помощью такого имеющего функцию измерения номинала контрольно-измерительного прибора, как мультиметр. Для измерения значения номинала контрольные щупы прибора подключают к специальным разъемам. Затем переключатель устанавливается на самый большой по значению предел измерения (в большинстве мультиметров это 200 мкФ). После этого щупы прикладывают к контактам конденсатора, спустя несколько секунд на дисплее прибора получают значение номинала накопительного устройства.
Важно! Перед измерением емкости смд накопитель обязательно разряжают – оставшийся в обкладках заряд может повредить электронные схемы мультиметра. С помощью специализированного измерительного прибора RLC
С помощью специализированного измерительного прибора RLC.
Для того чтобы узнать рабочее напряжение накопительного SMD устройства, пользуются следующей простой методикой:
- При помощи мультиметра измеряют напряжение между выводами включенного в схему компонента;
- Полученное значение умножают на 1,5.
Рассчитанное таким способом рабочее напряжение будет примерным, более точное значение данной характеристики можно узнать из маркировочного кода конденсатора или его описания.
Керамические компоненты
В керамических элементах в качестве диэлектрика применяется фарфор либо аналогичные неорганические материалы. Основное достоинство таких изделий заключается в устойчивости к высоким температурам и возможности производства изделий крайне малых размеров.
Важно! SMD конденсаторы керамического типа также устанавливаются методом пайки на печатную плату. Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки
Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки.
Керамические SMD конденсаторы
В отличие от радиодеталей стандартных размеров SMD элементы небольшого размера вначале приклеивают к плате, а уже потом припаивают выводы. На производстве керамические изделия этого типа устанавливаются специальными автоматами.
Маркировка керамических SMD конденсаторов
Небольшие керамические конденсаторы SMD маркируются буквенно-цифровым кодом, состоящим из 3 символов. Первый указывает на минимальное значение рабочей температуры, например:
- Z — от 10 °С;
- Y — от −30 °С;
- X — от 55 °С.
Маркировка SMD конденсаторов Второй символ указывает на верхний предел нагрева радиодетали:
- 2 — до 45 °С;
- 4 — до 65 °С;
- 5 — до 85 °С;
- 6 — до 105 °С;
- 7 — до 125 °С;
- 8 — до 150 °С;
- 9 — до 200 °С.
Третий символ указывает на точность электронного компонента:
- A — до ± 1,0 %;
- B — до ± 1,5 %;
- C — до ± 2,2 %;
- D — до ± 3,3 %;
- E — до ± 4,7 %;
- F — до ± 7,5 %;
- P — до ± 10 %;
- R — до ± 15 %;
- S — до ± 22 %;
- T — до ± 33 %;
- U — до ± 56 %;
- V — до ± 82 %.
Ёмкость небольших керамических SMD конденсаторов указывается в пикофарадах. Чтобы сэкономить площадь небольшого радиоэлемента, основное число мантисса закодировано в букве латинского алфавита. В таблице, указанной ниже, приведен полный список подобных обозначений.
Таблица с закодированными символами
После цифры указывается множитель, например, обозначение на керамическом конденсаторе Х3 означает, что конденсатор имеет емкость 7,5 * 10 ^ 3 Pf.
Обратите внимание! Перед кодом, обозначающим емкость керамического SMD конденсатора, может стоять латинская буква, которая указывает на бренд производителя электронного компонента. Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика
С этой целью применяются:
Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика. С этой целью применяются:
- NP0. Диэлектрическая проницаемость такого элемента находится на крайне низком уровне. Основное достоинство компонентов этого типа заключается в хорошей устойчивости к резким температурным перепадам. Недостаток элементов, в которых используется диэлектрик этого типа — высокая цена;
- X7R. Среднего качества диэлектрик. Изделия, в которых используется изолятор этого типа, не обладают отличными характеристиками по устойчивости к пробою, но в среднем температурном диапазоне они способны проработать значительно дольше многих, более дорогих элементов;
- Z5U. Диэлектрик с высокими значениями электрической проницаемости, но обратной стороной этого показателя является слишком большая емкостная погрешность;
- Y5V. Изолирующий материал обладает примерно такими же характеристиками, как и Z5U. По стоимости этот диэлектрик является самым дешевым, поэтому электрические компоненты, изготовленные на его основе, реализуется по самым низким ценам.
Вам это будет интересно Какова единица измерения силы тока
Сгоревший SMD конденсатор
Учитывая все выше изложенное, можно быть уверенным в том, что если SMD конденсатор не подгорел или не изменил цвет поверхности по другим причинам, то всегда можно определить его номинал по нанесенной на его корпусе маркировке.
Пассивные компоненты: Конденсаторы
ТИП: | Расшифровка Типа: | |||||
SC | Ceramic Chip Capacitor Керамический чип конденсатор | |||||
Размер (дюймы) | Размер (мм) | Толщина компонента | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента бумажная | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
01005 | 0402 | 0.2 мм ± 0.03 | 8 мм | 2 мм | 20000 | — |
0201 | 0603 | 0.3 мм ± 0.03 | 8 мм | 2 мм | 15000 | — |
0402 | 1005 | 0.5 мм ± 0.1 | 8 мм | 2 мм | 10000 | — |
0603 | 1608 | 0.8 мм ± 0.1 | 8 мм | 4 мм | 4000 | — |
0805 | 2012 | 0.6 – 1.25 мм | 8 мм | 4 мм | 4000 | 3000 |
1206 | 3216 | 0.6 – 1.25 мм | 8 мм | 4 мм | 4000 | 3000 |
1210 | 3225 | 1.25 мм – 1.5 мм | 8 мм | 4 мм | — | 3000 |
1812 | 4532 | 2 мм (Макс.) | 12 мм | 8 мм | — | 1000 |
2225 | 5664 | 2 мм (Макс.) | 12 мм | 8 мм | — | 1000 |
Габаритные размеры (мм)
Серия CA
Код | ФD | L | A | H | I | W | P | K |
A | 3,0 | 5,4 | 3,3 | 4,5 max | 1,5 | 0,55±0,1 | 0,6 | 0,35+0,15 (-0,20) |
B | 4,0 | 5,4 | 4,3 | 5,5 max | 1,8 | 0,65±0,1 | 1,0 | 0,35+0,15 (-0,20) |
C | 5,0 | 5,4 | 5,3 | 6,5 max | 2,2 | 0,65±0,1 | 1,5 | 0,35+0,15 (-0,20) |
D | 6,3 | 5,4 | 6,6 | 7,8 max | 2,6 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
E | 8,0 | 6,2 | 8,3 | 9,4 max | 3,4 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
F | 8,0 | 10,2 | 8,3 | 10,0 max | 3,4 | 0,90±0,2 | 3,1 | 0,70±0,20 |
G | 10,0 | 10,2 | 10,3 | 12,0 max | 3,5 | 0,90±0,2 | 4,6 | 0,70±0,20 |
Серия CB
Код | ФD | L | A | H | I | W | P | K |
B | 4,0 | 5,4 | 4,3 | 5,5 max | 1,8 | 0,65±0,1 | 1,0 | 0,35+0,15 (-0,20) |
C | 5,0 | 5,4 | 5,3 | 6,5 max | 2,2 | 0,65±0,1 | 1,5 | 0,35+0,15 (-0,20) |
D | 6,3 | 5,4 | 6,6 | 7,8 max | 2,6 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
E | 8,0 | 6,2 | 8,3 | 9,5 max | 3,4 | 0,65±0,1 | 2,2 | 0,35+0,15 (-0,20) |
F | 8,0 | 10,2 | 8,3 | 10,0 max | 3,4 | 0,90±0,2 | 3,1 | 0,70±0,20 |
G | 10,0 | 10,2 | 10,3 | 12,0 max | 3,5 | 0,90±0,2 | 4,6 | 0,70±0,20 |
Свойства
Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.
В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.
Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.
Рис. 5. Пусковой конденсатор с проводами
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Читать также: Самодельные прицепы для мотоблока своими руками
Код | Емкость | Емкость | Емкость |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость | Емкость | Емкость |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33H2 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными , «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Код | Емкость | Напряжение |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Механизм и строение
Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).
Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.
Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90 доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.
Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.
Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.
Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.
Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.
Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.
По типу конструкции выпускают следующие керамические конденсаторы:
- КТК – трубчатые;
- КДК – дисковые;
- SMD – поверхностные и другие.
Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Применение конденсаторов и их работа
Конденсаторы находят применение практически во всех областях электротехники.
- Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
- Конденсаторы применяются для сглаживания пульсаций выпрямленного или входного напряжения.
- В фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п. т.к. при быстром разряде конденсатора можно получить импульс большой мощности.
- Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти (см. DRAM, Устройство выборки и хранения).
- Конденсатор может использоваться как двухполюсник, обладающий реактивным сопротивлением, для ограничения силы переменного тока в электрической цепи (см. Балласт).
- Процесс заряда и разряда конденсатора через резистор (см. RC-цепь) или генератор тока занимает определённое время, что позволяет использовать конденсатор во времязадающих цепях, к которым не предъявляются высокие требования временной и температурной стабильности (в схемах генераторов одиночных и повторяющихся импульсов, реле времени и т. п.).
- В электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
- Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов (см. генератор Ван де Граафа).
- Измерительный преобразователь малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
- Измерительный преобразователь влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
- В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
- Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня.
- Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Также он может применяться для пуска и работы трёхфазных асинхронных двигателей при питании от однофазного напряжения.
- Аккумуляторов электрической энергии (см. Ионистор). В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Также существуют некоторые модели трамваев, в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BA%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Типовые размеры SMD-резисторов
Размеры и форму этих деталей определяет нормативный документ JEDEC. На корпус наносится маркировка, которая сообщает о длине и ширине резистора в дюймах. Это наиболее распространенный вариант, используемый производителями, поставщиками, продавцами.
Например, маркировка 0804 означает, что длина детали равна 0,08 дюйма, а ширина – 0,04 дюйма. В системе СИ размеры указываются в миллиметрах. Для перевода в миллиметры дюймы умножают на 2,54. Обозначение резистора 0804 в системе СИ – 2010. Длина – 2,0 мм, ширина – 1,0 мм.
Для подбора нужного вида детали, расшифровки кодов можно воспользоваться калькулятором SMD-резисторов или специальной программой «Резистор». С их помощью можно узнать номинальное сопротивление имеющегося резистора или, наоборот, выяснить, как выглядит маркирорвка для нужного номинала.
Виды конденсаторов
Конденсатор — это две металлические пластины, разделённые диэлектриком. Различают их по типу диэлектрика, материалу корпуса и способу производства пластин. Есть такие типы конденсаторов:
- Бумажные. Пластины в нём — металлическая фольга, а диэлектрик — специальная бумага. Запаиваются они обычно в металлический корпус, так как прочностью не отличаются. Нормально себя ведут как в низкочастотных цепях, так и в высокочастотных.
Металлобумажные. Отличаются тем, что на бумагу нанесено металлическое напыление. Они более надёжны, при одинаковых размерах с бумажными имеют большую ёмкость.
- Электролитические. На металлическую фольгу (тантал или алюминий) наносится оксид, который и выполняет роль диэлектрика. Второй слой диэлектрика — электролит. Он может быть сухим или жидким. Обычно электролитическими называют с жидким электролитом. Электролитические конденсаторы практически всегда поляризованы. И при их подключении, обязательно соблюдать полярность. В противном случае они просто выйдут из строя. Бывают такие подвиды:
- Хотя конденсаторы с сухим электролитом относятся к тому же типу, их обычно называют танталовыми. Именно с танталом обычно применяют сухой электролит.
Алюминиевые электролитические конденсаторы. Это когда на алюминиевую фольгу нанесён триоксид алюминия. Они имеют большую ёмкость при малых размерах, но применяться могут только в низкочастотных схемах. И ещё один недостаток — большой ток утечки.
- Танталовыми правильно называть конденсаторы из танталовой фольги, в которых диэлектрик — пентоксид тантала. Они так же компактны, как и алюминиевые, но имеют более низкий ток утечки. И ещё — они более прочные механически.
Твердотельные или полимерные. В них диэлектрик — полимер. Это относительно новый тип конденсаторов. Они более устойчивы к температуре (как высокой, так и к низкой), имеют маленький ток утечки, низкое эквивалентное сопротивление и большой импульсный ток. Ими можно заменять электролитические аналоги, так как они более стабильны.
- Плёночные. Ещё один из новых видов конденсаторов. Между металлическими пластинами проложена плёнка пластика. Это может быть поликарбонат, полиэстер, полипропилен и другие полимеры с диэлектрическими свойствами. Они более прочные механически, выдерживают высокие токи имея при этом очень малые токи утечки, стойки к пробою. Свойства отличные, но они имеют небольшую ёмкость. По совокупности характеристик обычно стоят в резонансных цепях (с возможным скачкообразным увеличением параметров).
Керамические. На керамическую основу наносится металлизированное напыление. Могут быть однослойными (малой ёмкости) и многослойными. Наиболее компактные конденсаторы, стойкие к механическим воздействиям. Но свойства керамических материалов сильно зависят от температуры, напряжения и частоты. Потому свойства керамических конденсаторов разные и зависят от вида использованной керамики. Для них также введена особая маркировка. Во-первых, потому что имеют малые размеры, а во-вторых, потому что делают из различной керамики и имеют большие отличия в характеристиках.
- Высокочастотные с воздушным диэлектриком. Это специальные конденсаторы, которые радиолюбителям не встречаются.
Это все виды конденсаторов, которые можно встретить сейчас в продаже и на платах. Как видите, их немало и выглядят они совсем по-разному. Так как часть проблем с техникой связана с выходом их из строя, то неплохо было бы разбираться в их маркировке. Так уйдёт меньше времени на поиск замены.