Классификация, параметры и область применения люминесцентных ламп

Конструкция люминесцентной лампы

Прежде чем приступать к классификации, следует рассмотреть внутреннее устройство люминофорной лампы, которая служит конструктивной основой для любых приборов, относящихся к этой категории.

Данные осветительные устройства относятся к типу газоразрядных. Лампы дневного света – люминесцентные работают от электрического тока и отличаются повышенными сроками эксплуатации. Используются в осветительных сетях жилых зданий, помещений офисов и торговых центров, объектах промышленного производства. Выпускаются в различных вариантах, отличающихся цоколями, формами стеклянных колб, цветовым излучением и другими параметрами.

Несмотря на такое разнообразие, каждая люминесцентная лампа имеет общие конструктивные элементы. Основой служит стеклянная трубка или колба, запаянная с двух сторон. Ее длина может быть разной, внутренняя поверхность покрыта специальным веществом – люминофором, а пространство заполнено инертным газом, с добавлением небольшого количества ртути. По краям расположены катоды, покрытые активным веществом. К ним подключены контактные штыри, выведенные наружу.

После подачи напряжения между электродами образуется электрический разряд. Он воздействует на смесь газа и ртутных паров, в результате чего возникает ультрафиолетовое излучение. В свою очередь, оно оказывает влияние на люминофор и, взаимодействуя с ним, превращается в видимый свет. Корректировка световых оттенков осуществляется с помощью люминофоров различного химического состава.

Все эти процессы осуществляются с использованием специальных пускорегулирующих устройств, без которых невозможен пуск и работа люминесцентной лампы. Данная аппаратура называется балластом и применяется для регулировки электрического разряда.

Балласт может быть электромагнитным, со стартером и дросселем, и электронным, на основе полупроводниковой схемы. Первый вариант считается устаревшим образцом, во время работы создает посторонний шум, имеет большие размеры. Более современные электронные устройства отличаются компактностью, работают тихо, практически без шума, мгновенно выполняют все переключения.

Размеры и эффективность

Для того чтобы получить максимальный эффект от электрического разряда, во внутреннем пространстве колбы должна поддерживаться определенная температура. В этом случае ультрафиолетовое излучение ртутных паров будет наибольшим. Данный параметр напрямую связан с диаметром колбы. Дело в том, что плотность тока во всех лампах должна быть примерно одинаковой. Этот показатель определяется путем деления величины тока на площадь сечения стеклянного цилиндра.

В связи с этим, лампы с колбами одинакового диаметра, но с различной мощностью, способны работать при одном и том же номинальном токе. Между падением напряжения и длиной цилиндра существует прямая пропорциональная зависимость, определяющая класс энергоэффективности. То есть, чем длинее лампа, тем выше ее мощность, что наглядно отражено на рисунке. При диаметре Т5 и 13 т длина составит 52 см, 21 ватт – 85 см, 28 ватт – 115 см. Диаметр Т8 и мощность 15 ватт соответствуют длине 44 см.

Большие размеры люминесцентных ламп изначально делали их не совсем удобными в использовании, поскольку им требовались и светильники с аналогичными габаритами. Производители всегда хотели уменьшить это соотношение, используя различные способы. Однако нельзя было просто снизить длину колбы и увеличить ток разряда, чтобы достичь установленной мощности. Это привело бы к возрастанию температуры внутри колбы и увеличению давления ртутных паров. При таких параметрах световая отдача ламп заметно снижается.

Инженерная мысль пошла другим путем, и размеры изделий были снижены путем изменения их конфигурации. Длинные цилиндры сгибались пополам или соединялись в кольцо, что позволило получить источники света U-образной и кольцевой формы с уменьшенными габаритами без потерь мощности. Одновременно удалось повысить коэффициент мощности и снизить коэффициент пульсации.

Окончательно проблема разрешилась лишь с появлением люминофоров, устойчивых к высоким электрическим нагрузкам. В результате, диаметр колб значительно снизился и достиг 12 мм. Общая длина ламп еще больше сократилась за счет многократных изгибов тонких стеклянных цилиндров. Появились компактные изделия, с таким же внутренним устройством и принципом работы, как у обычных ламп линейного типа.

Виды ламп дневного света

Все стандартные люминесцентные лампы разделяются на два основных типа – высокого и низкого давления, определивших различия и особенности конструкции каждого из них. Описание каждой из них приложено в инструкции по эксплуатации.

Первый вариант представлен лампами ДРЛ, получившими широкое распространение в уличных светильниках. Они отличаются высокой мощностью и низкой цветопередачей, поэтому и применяются на больших площадях, где не требуется высокое качество света. Существуют изделия с повышенной светоотдачей и различной цветовой гаммой. Они используются в качестве мощных точечных источников света и декоративной подсветки, выделяющей архитектурные элементы зданий.

Более всего оказалась востребована люминесцентная лампа низкого давления, которая используется повсеместно – в быту и на производстве. Преимущественно, это изделия цилиндрической формы, успешно заменяющие традиционные лампы накаливания. В настоящее время рынок электроники все больше заполняется компактными люминесцентными лампами. Независимо от конструкции, все они работают вместе со пускорегулирующей аппаратурой электромагнитного или электронного типа, снижающей коэффициент пульсации. Последний вариант представляет собой миниатюрную электронную схему, способную разместиться в цоколе лампы.

Принцип действия

Принцип действия заключается в возникновении разряда между электродами при подключении источника питания. Разряд взаимодействует с парами ртути и газа, вызывая невидимое для глаз ультрафиолетовое излучение. Для преобразования его в видимый свет, служит люминофор. Состав люминофора влияет на оттенки свечения лампы.

При использовании лампы необходимы дроссель или балласт, обеспечивающий запуск лампы, устранение мерцания. Применяют типы балластов:

  • электромагнитные — имеют механический принцип действия, сокращают срок службы лампы;
  • электронные — работают без звука, обеспечивают мгновенное включение ламп.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

ВНИМАНИЕ! От типа балласта зависит схема подключение к электрической сети

Классификация

Люминесцентные источники света классифицируются:

  • по конструкции: трубчатые (линейные), компактные;
  • по мощности: 5 Вт – 80 Вт;
  • по длине: 8,5 – 1 500 см;
  • по типу разряда: дуговые, тлеющего, тлеющего свечения;
  • по конфигурации: прямые, U-oбразные, W-oбразные, кольцевые, панельные, свечеобразные;
  • по спектру свечения: ультрафиолетовые, специальные;
  • по наличию стартера: стартерные, бесстартерные;
  • по виду цоколя: резьбовые, штырьковые, штифтовые;
  • по наличию электронной пускорегулирующей аппаратуры: использующие ЭПРЛ (компактные), не использующие ЭПРЛ (трубчатые);
  • по типу распределения света: без направления светоизлучения, с направлением светоизлучения;
  • по излучению: дневного света, различных цветов.

Область применения и использование

Освещение люминесцентными лампами больших площадей служит:

  • для улучшения условий освещения;
  • для снижения расхода электроэнергии на 50–80%;
  • для увеличения времени работы источников света.

Лампы с электронными балластами с патронами E27 и E14 используют вместо ламп накаливания в быту. У них отсутствует мерцание и гул. Освещают различные места:

  • торговые центры;
  • образовательные учреждения;
  • больницы и поликлиники;
  • банки;
  • производственные площади.

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Мощность и спектр

Чтобы источник освещения мог нормально работать, его необходимо подключать к сети 220  В с частотой 50 Гц. Отклонение может негативно сказаться на стабильности освещения, значительно сократить срок службы.

Перепады напряжения способны изменять мощность электрического прибора, снижая его эффективность. Даже самая мощная лампа при недостатке напряжения будет светить слабо.

Смотреть обязательно: с 2020 года вступает запрет на люминесцентные лампы.

Современные ЛЛ имеют практически любые оттенки. Спектр цветовой температуры меняется от классического теплого до дневного света. По оттенкам каждая лампа маркируется соответственно.

Отдельно стоит рассмотреть осветительные устройства с ультрафиолетовым свечением. Они обозначаются отметкой ЛУФ, тогда как приборы рефлекторного синего цвета имеют маркировку ЛСР. УФ-лампы используются для бактерицидной обработки помещений.

Большая часть люминесцентных ламп выдает поток, по своей длине приближенный к обычному солнечному свету. Увидеть сходство между спектрами можно на картинке ниже.


Рисунок 4. Сравнение спектра солнечного света и ЛЛ

Слева показан спектр солнечного света, справа – спектр качественной люминесцентной лампы. Свет солнца обладает более ровной характеристикой, однако сходство определенно наблюдается. У ЛЛ присутствует ярко выраженный пик в зеленой области, тогда как в красной области налицо падение.

Научно доказано, что чем ближе свет искусственного источника к естественному освещению, тем он полезнее для здоровья. По этой причине люминесцентные лампы более предпочтительны, чем светодиодные приборы.

Область применения

Благодаря превосходным техническим характеристикам люминесцентных энергосберегающих ламп (широкой поверхности излучения, высокой энергетической эффективности, возможности подбора подходящего цвета), оборудование можно использовать во многих сферах.

Световые дневные лампы помогают создать освещение приятное для глаз освещение, сохраняют окраску окружающих объектов, позволяют в точности воспроизвести все контрасты цветов.

В зависимости от сферы применения выбирается подходящий цвет освещения:

  • ярко-белый — для мест, в которых нужно добиться совмещения в органичном варианте естественного освещения с искусственным, а также добавить теплые оттенки, помогающие создать дома уют;
  • лампы разных цветов используются для декорирования помещения. С помощью рассеянного света от энергосберегающих ламп освещают оранжереи, аквариумы, рабочую зону на кухне или в ванных комнатах. Они позволяют добиться комфортного освещения в кабинетах, предназначенных для работы, выставочных или торговых павильонах.

Важно! Широкий спектр вариантов позволяет использовать люминесцентные лампы в различных сферах как для применения дома или на улице, так и для развития бизнеса

Типы выпускаемых люминесцентных ламп

Существует терминологическая путаница, в результате которой энергосберегающие лампы были выделены в отдельных класс ламп. При этом в России под энергосберегающими лампами понимаются компактные люминесцентные лампы для домашнего использования.

Для многих является открытием, что лампы спиральной формы, которые мы используем дома, по своему принципу работы являются теми же самыми люминесцентными лампами, которыми оборудованы все общественные учреждения. Если же говорить о сбережении энергии, то все такие осветительные приборы относятся к классам энергоэффективности А или В.

Представляется оптимальным классифицировать люминесцентные лампы в соответствии с различными основаниями. В рамках наиболее общей типологии, основанной на технологии производства и сферах использования, можно выделить три вида:

  1. Стандартные лампы с одним, тремя и пятью слоями люминофора (диаметр 26 мм).
  2. Компактные лампы с трубкой различной формы с несколькими слоями люминофора.
  3. Специальные лампы для использования в соответствии с узкоспециализированными целями.

Помимо этого, типы люминесцентных ламп определяются на основании следующих признаков:

  • Мощность потребляемой энергии (W).

В отличии от этого же показателя ламп накаливания технические характеристики люминесцентных ламп указывают не на силу излучаемого света, а на энергоэффективность.

Излучаемый световой поток (Лм).

710 Лм соответствует лампе накаливания мощностью 60 W, 1340 Лм – 100 W, 3040 Лм – 200 W.

Цветовая температура света (К).

От красного (2000 К) до бело-голубого (7000 К).

Индекс цветопередачи (Ra).

Определяется по 100-балльной шкале. Чем ни выше значение, тем «правильнее» цвет освещаемых лампой вещей.

Основные преимущества использования электронного балласта для люминесцентных ламп заключаются в экономии потребляемой источником света энергии и продлению срока его службы. Но главным недостатком такого устройства является его цена. Поэтому многие все так же предпочитают пользоваться электромагнитным дросселем, о характеристиках которого можно прочитать в отдельной статье.

Размер (длина).
Цоколь.
Схема подключения.

Одиночное, последовательное или парное.

Размещение пускорегулирующего аппарата.

Может быть размещен в самой лампе (компактная лампа) или в светильнике (стандартная лампа).

Основу всех люминесцентных ламп составляют пары ртути в небольшой концентрации, которые при пропускании через них электричества, излучают ультрафиолетовый свет. Люминофор – химический состав, содержащийся на поверхности трубки внутри, преобразует ультрафиолет в видимую часть спектра.Характеристики излучаемого лампой света зависят от состава и качества люминофора.

Обзор плюсов и минусов

Если более подробно изучить характеристики основных вариантов источников света (галогенные, лампы накаливания, люминесцентные и светодиодные аналоги), то можно выделить их сильные и слабые стороны. Например, по интенсивности нагрева из всех существующих конструкций выигрывают лишь светодиодные исполнения, тогда как люминесцентные лампы все же греются, хоть и в несколько меньшей мере, чем источники света с нитью накаливания.

По степени хрупкости газоразрядные приборы уступают варианту на базе диодов. Зато уровень мощности у люминесцентных исполнений и светодиодных источников света находится почти на одном уровне. Для примера, оба исполнения обеспечивают примерно одинаковую интенсивность освещения (700-800 лм) при мощности с разницей всего в 5 Вт. Больше всех потребляют энергию лампы накаливания.

Еще один параметр для сравнения – срок функционирования. Безусловно, лидируют светодиодные исполнения (в среднем до 50 000 часов работы). Однако из всех остальных аналогов люминесцентные лампы выделяются довольно продолжительным периодом эксплуатации (от 4 000 до 20 000 часов), на что оказывают влияние условия работы.

Каким производителям отдать предпочтение?

Одни из наиболее известных марок на сегодняшний день: Philips, Osram, General Electric. Ассортимент осветительной техники очень широк и порой довольно трудно разобраться в том, какой производитель надежнее и ответственнее подходит к работе

Ведь стоимость люминесцентных источников света довольно большая, поэтому важно сразу сделать правильный выбор и купить лампу высокого качества

Условные обозначения от производителей

Особого доверия заслуживают изделия первых двух из вышеназванных марок, так как они занимаются производством разнотипных источников света, включая и светильники с люминесцентными лампами, и по каждому направлению отмечается высокое качество продукции. Кроме того, все три завода-изготовителя на рынке уже довольно давно.

Эксплуатация

Значительные перепады напряжения в сети оказывают негативное воздействие на такие источники света. Особенно нежелательна перегрузка в большую сторону (выше 240 В). Рекомендуется также включать лампу лишь после ее полного остывания. Допустимые значения температуры окружающей среды для эксплуатации источника света лежат в пределах диапазона: от -15 до +40 градусов.

Маркировка российской продукции

Запрещено использовать люминесцентные лампы наряду со стандартными светорегуляторами (диммерами).

Степень безопасности, утилизация

В полностью исправном состоянии такие лампочки не представляют угрозы жизни и здоровью человека или животного. Но внутри колбы содержатся пары ртути, хоть и в небольших количествах. А, кроме того, встречаются более безопасные исполнения, содержащие амальгамы (ртуть растворяется в металлах), но данный вариант встречается реже.

Сегодня существуют специализированные организации, которые официально занимаются утилизацией токсичных отходов. Поэтому в случае нарушения целостности корпуса лампы в первую очередь необходимо покинуть помещение, затем вызвать соответствующее подразделение.

Таким образом, люминесцентные лампы во многом превосходят более простые аналоги (например, с нитью накаливания). В чем-то данный вид изделий уступает светодиодным источникам освещения

Но важно подбирать лампу на основании соответствия ее основных параметров условиям работы, а не подбирать наиболее популярный вариант

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений.

В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.

Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.


ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели в этой статье.

Процессы в газе, люминофоре и на катоде ламп в процесс горения

Проследим процессы, происходящие во времени, в газе или парах металла при прохождении через них электрического тока, а также некоторые специфические процессы, свойственные люминесцентным лампам, в частности их люминофорному слою.

В первые часы горения происходит некоторое изменение электрических параметров, связанное с завершением активировки катода и с поглощением и выделением некоторых примесей из материалов внутренних деталей ламп в условиях повышенной химической активности, характерной для плазмы. В течение остального срока службы электрические параметры остаются неизменными до тех пор, пока не будет израсходован запас активирующего вещества в оксидном катоде, что приводит к значительному повышению напряжения зажигания, то есть практически к невозможности дальнейшей эксплуатации ламп.

Сокращение срока службы люминесцентных ламп может происходить и в результате уменьшения содержания ртути, определяющей давление ее насыщенных паров. При охлаждении лампы ртуть частично оседает на люминофоре, который при соответствующей структуре слоя может связывать ее так, что она больше не участвует в дальнейшем процессе испарения.

Рисунок 9. Изменение светового потока люминесцентных ламп в течение срока службы: 1 – лампы мощностью 40 Вт; 2 – 80 Вт; 3 – 15 и 30 Вт

Необратимые процессы протекают во время срока службы в слое люминофора, что приводит к постепенному уменьшению светового потока люминесцентных ламп. Как видно из приведенных на рисунке 9 кривых изменения светового потока люминесцентных ламп в течение срока службы, это уменьшение происходит особенно интенсивно в течение первых 100 часов горения, затем замедляется, становясь после 1500 – 2000 часов примерно пропорциональным длительности горения. Такой характер изменения светового потока люминесцентных ламп в течение срока службы объясняется следующим. В течение 100 часов преобладают изменения состава люминофора, связанные с химическим реакциями с примесями в наполняющем газе; в течение всего процесса горения имеет место медленное разрушение люминофора под действием квантов, обладающих большой энергией, соответствующих резонансному излучению ртути. К последнему процессу добавляется образование на поверхности люминофора слоя адсорбированной ртути, непрозрачного для возбуждающего ультрафиолетового излучения. Кроме этих процессов, а также изменения в результате взаимодействия со стеклом на слое люминофора осаждаются продукты распада катодов, образующих около концов лампы характерные темные, иногда зеленоватые кольцевые зоны.

Опытами установлено, что стойкость люминофорного слоя зависит от удельной электрической нагрузки. Для люминесцентных ламп с повышенной электрической нагрузкой применяют люминофоры более стойкие, чем галофосфат кальция.

Спектр излучения люминофора для люминесцентных ламп

Человеческий глаз воспринимает волны длинной 380÷780 нм. Кроме них солнечный свет содержит излучение ультрафиолетового и инфракрасного спектра.

В люминесцентных лампах ультрафиолетовое излучение люминофором преобразуется в видимый свет. Внутреннюю поверхность колб дешевых модификаций покрывают одним слоем люминесцирующего состава. Результат: они излучают голубой или желтый свет, но при этом происходит искажение цветов предметов.

Трубки дорогих моделей покрывают тремя либо пятью слоями люминофора. Это делает освещение похожим на естественный свет из-за увеличения числа диапазонов излучения. Достигается максимальное качество цветопередачи.

По спектральному составу излучения люминесцентные светильники разделяют на три группы:

  1. Стандартные (1 слой люминофора). Являются источниками белого цвета. С их помощью освещают общественные заведения.
  2. С улучшенной цветопередачей (3 или 5 слоев люминесцирующего вещества). Передача света у таких моделей лучше и их световой поток больше на 12 %, чем у стандартных аналогов. Лампы данного вида используют в музеях, мебельных салонах, ими оснащают витрины.
  3. Специальные. В них используется люминофоры особого типа либо с добавками. Спектральный состав излучения определяется назначением устройства, например, для соляриев, бактерицидные.

Чтобы избежать вредного воздействие излучения ультрафиолетового спектра на кожу человека, осветительные устройства в рабочих, жилых помещениях оснащают УФ-фильтрами. В таких местах лучший вариант – это лампы максимально приближенные спектрально к солнечному свету.

Где применяются люминесцентные лампы

Как было сказано ранее, люминесцентные лампы находят довольно широкое применение практически повсеместно.

Несмотря на некоторые отрицательные стороны применения этого изделия, достоинства его, все же переоценить довольно трудно.

Каждый из нас учился в школе, посещал учреждения здравоохранения, административные здания и т.д.

Так вот система освещения в этих помещения как раз основывается на применении люминесцентных ламп.

Как правило, это довольно масштабные по своим размерам трубки, обеспечивающие качественное освещение в зданиях с некоторыми архитектурными особенностями.

Но если общественные здания отличаются своими габаритами, например, высокими потолками, большими по площади залами и комнатами, где освещение требуется довольно мощное и постоянное, то в домашних условиях люминесцентные лампы, которые оптимально будут эксплуатироваться там, не подойдут.

К счастью, уровень производственных навыков значительно вырос, а значит, появились адаптированные к домашним условиям люминесцентные лампы.

Они отличаются куда меньшими размерами, имеют в своем составе электронные балласты, которые возможно подключать в патроны, применяемые в домашней электронике.

И несмотря на свежесть этого новшества, адаптированные лампы уже прочно завоевывают этот сегмент рынка.

Кстати, существует довольно интересный факт. Уже привычные нам плазменные телевизоры имеют в своем механизме как раз люминесцентные лампы!

Конечно, это тоже адаптированный в соответствии со спецификой применения вариант, но, тем не менее, принцип его работы заключается в том же самом явлении. Жидкокристаллические экраны, кстати, ранее изготовлялись только с применением люминесцентных ламп, однако позже они были заменены на светодиоды.

Все мы видели световую рекламу на улицах города. Она тоже не обошлась без применения люминесцентной лампы! Фасады зданий также освещают именно этим изделием.

Хотя на данный момент конкуренцию в области световой рекламы люминесцентным лампам составляют SMD и DIP экраны.

Также люминесцентные лампы получили широкое применение в области растениеводства для выращивания растений.

Если говорить в общем, выделяя основную мысль применения люминесцентной лампы, то можно сделать вывод: их имеет смысл применять в тех случаях, когда требуется снабдить светом помещение больших размерных показателей.

Совместная работа с системами цифрового интерфейса освещения с возможностью адресации позволяет обеспечить и высокую светоотдачу, и, в то же время, не потратить крупных сумм на оплату электроэнергии, ведь по сравнению с лампами накаливания люминесцентные лампы позволяют сократить потребление энергии более чем в половину! Тем самым, являясь энергосберегающими.

Помимо этого, лампы сокращают расходы и длительностью своего применения.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий