Как работает кварцевый резонатор?
Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.
Читайте так же
Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.
Как проверить кварцевый резонатор
Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…
Проверка кварцевых резонаторов
Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…
Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное – соблюдайте технику безопасности.
О деталях устройства
Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор «Винстар» однострочный WH1601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме WH1601A можно применить WH1602B – двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h21. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.
Как проверить кварц на работоспособность, простая схема
Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.
На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.
Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.
Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.
Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.
Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.
Рис.1. Схема генератора для проверки кварцев.
Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.
А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.
Источник
Параметры кварцевых резонаторов
Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.
Будет интересно Дроссели в электрике: что это и где используются?
Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.
Параметры кварцевых резонаторов.
Температурная нестабильность частоты
Относительное отклонение рабочей частоты резонатора от базовой частоты. Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов. Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.
Режим работы резонатора (номер гармоники)
Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).
Кварцевый резонатор-структура, принцип работы, как проверить
Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.
В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.
Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.
Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера.
Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения.
Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.
В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.
Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 105 — 107. Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.
В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.
Принцип работы
Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин).
Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.
Проверка работоспособности
Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:
- Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
- Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.
В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.
КВАРЦЕВЫЕ ГЕНЕРАТОРЫ GEYER ELECTRONIC
Geyer Electronic выпускает кварцевые генераторы для тактирования цифровых схем. Кварцевый генератор — это кварцевый резонатор и схема автогенератора в одном корпусе. В последние годы все большую популярность приобретают кварцевые генераторы в миниатюрных корпусах для поверхностного монтажа. Их основные параметры сведены в таблицу 3.
Таблица 3. Кварцевые генераторы Geyer Electronic для поверхностного монтажа
Серия | Диапазон доступ- ных частот,1 (MГц) | Диапа- зоны рабочих темпера- тур2, (°С) | Неста- биль- ность частоты, (ppm) | Напря- жение питания (В) | Емкость нагр., макс. (пФ) | Пере- клю- чение выхода в третье состо- яние | Размеры корпуса, (мм) |
KXO-97 | 1,0…50,0 | -20…70 -40…85 | ±50 (±100)4 | 5±10% | 50 | + | 7,0/5,08/ 1,8 |
50,1…80,0 | 15…25 | ||||||
80,1…100,0 | 30 | ||||||
KXO-V97 | 1,0…50,0 | 3,3±10%5 | 20 | ||||
50,1…80,0 | 15 | ||||||
80,1…160,0 | |||||||
KXO-V99 | 1,0…181,0 | 3,3 | 15 | 5,0/3,2/ 1,0 | |||
KXO-V96 | 1,0…80 | 2,5/3,0/ 3,3 | 3,2/2,5/ 1,2 | ||||
KXO-V95 | 1,0…70,0 | 2,5/2,8/ 3,0/3,3 | 2,5/2,0/ 082 |
1, 2 — см. сноски для таблицы 1 4 ±50 (±100) в скобках указано значение нестабильности для диапазона температур от -40 до 85°С 5 доступны с напряжениями питания 1,8/2,5/3,0 B (с допуском ±10%)
Большинство современных микроконтроллеров и цифровых процессоров уже содержат встроенную схему автогенератора. Остается только подключить внешний кварцевый резонатор. Однако для многих приложений удобнее именно кварцевый генератор. В этом случае устройство получается компактнее и надежнее, а разработчику остается только правильно выбрать подходящий генератор. Расчет, изготовление и настройка собственной схемы кварцевого генератора для частот более 30…40 МГц требует определенных профессиональных знаний, опыта и специального оборудования. Даже на частотах до 30 МГц генератор, собранный на дискретных компонентах, часто запускается не на той частоте. Применение готового кварцевого генератора всегда гарантирует стабильный результат при меньшей занимаемой площади на печатной плате. Большинство серий кварцевых генераторов Geyer Electronic имеют вход для отключения выхода (перевода в третье состояние с большим выходным сопротивлением). Кварцевые генераторы широко применяют в портативных радиостанциях, в качестве опорных генераторов в GPS- или ГЛОНАСС-навигаторах, в системах точного измерения времени.
Компания также выпускает следующие типы кварцевых генераторов:
- кварцевые генераторы, управляемые напряжением (VCXO- Voltage Controlled Crystal Oscillator). Частоту такого генератора в определенных пределах можно изменить, подавая управляющее напряжение на соответствующий вход;
- термокомпенсированные кварцевые генераторы (TCXO- Temperature Compensated Crystal Oscillator). Эти генераторы имеют высокую температурную стабильность благодаря аналоговому или цифровому методу компенсации зависимости частоты от температуры. Термокомпенсированные кварцевые генераторы применяются в устройствах, где требуется быстрый выход на рабочий режим и повышенная стабильность частоты (радиолокационные станции, опорные генераторы мобильных и переносных радиопередающих устройств и т.п.);
- термокомпенсированные кварцевые генераторы, управляемые напряжением (VCTCXO- Voltage Controlled Temperature Compensated Crystal Oscillator). Возможность корректировки частоты внешним управляющим напряжением позволяет при необходимости еще больше повысить стабильность генерируемой частоты. Генераторы, управляемые напряжением применяются в системах фазовой автоматической подстройки частоты (ФАПЧ), частотной модуляции (ЧМ), импульсно-кодовой модуляции (ИКМ).
Для многих разработчиков могут представлять интерес керамические резонаторы Geyer Electronic серий KX-ZTT, KX-ZTA, KX-XTB.
С помощью рисунка 3 можно легко сравнить габаритные размеры разных серий кварцевых резонаторов, генераторов и керамических резонаторов Geyer Electronic.
Виды кварцевых резонаторов
По типу корпуса кварцевые резонаторы могут быть выводные для объемного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD). Кварцевые резонаторы могут изготавливаться различной конструкции, иметь разнообразную «упаковку» (корпуса могут быть пластмассовые, стеклянные, металлические, самых разных форм и размеров), но все они предназначены для стабилизации частоты в радиоэлектронных устройствах.
Пьезоэлектрические кварцевые резонаторы различают:
- по назначению (генераторный, фильтровый и т.д.);
- по заполнению внутреннего объема корпуса (негерметизированный, герметизированный, вакуумный и др.);
- по порядку колебаний пьезоэлемента;
- по числу электромеханических резонансных систем (одинарный, сдвоенный и т.д.).
Активность кварцевых резонаторов является важнейшим параметром для успешной эксплуатации этих приборов. Активность пьезоэлектрического резонатора — качественная характеристика оценки способности кварцевого резонатора возбуждаться в определенных условиях. Активность резонатора не определяется полностью его собственными параметрами. Емкость схемы, в которой работает кварцевый резонатор, оказывает огромное влияние на его активность.
Практически определены оптимальные значения нагрузочной емкости для резонаторов, работающих в схеме на основной частоте колебаний и на механических гармониках. В первом случае нагрузочная емкость должна быть в пределах от 20 до 100 пФ (стандартизованные значения 20, 30, 50 и 100 пФ) и дпя резонаторов, работающих на механических гармониках (на частотах выше 15 МГц) в схемах последовательного резонанса 12, 15,120 и 30 пФ. Такие нагрузочные емкости обеспечивают сочетание высокой активности и хорошей стабильности частоты.
Режим работы кварцевого резонатора значительно ухудшается, если эксплуатировать его без учета влияния параметров схемы генератора на параметры резонатора. Условия работы кварцевого резонатора и его активность в большой мере зависят от параметров колебательного контура и режима работы кварцевого генератора.
В кварцевых резонаторах, применяемых в фильтрах, используются в основном те же виды колебаний, что и в генераторных кварцевых резонаторах. В фильтрах применяются двух- и четырехэлектродные вакуумные кварцевые резонаторы. В специальных схемах многозвенных кварцевых фильтров наиболее часто используются четырехэлектродные резонаторы как более экономичные. Наличие в любом пьезоэлементе нежелательных резонансных частот наряду с основной частотой колебаний заставляет особенно тщательно выбирать тип среза пьезоэлемента при использовании его в фильтровой схеме. Необходимо, чтобы его нежелательные резонансы были сдвинуты относительно основной частоты, а также не участвовали в основных колебаниях и не влияли на характеристику фильтра. Величина нежелательных резонансов и их сдвиг относительно основной частоты являются определяющими при выборе кварцевых резонаторов для электрических фильтров.
Для уменьшения ухода частоты резонаторов в широких пределах изменения температур используют термостатирование. Кварцевый резонатор помещают в термостат, в котором автоматически поддерживается постоянная температура.
На эквивалентные параметры кварцевых резонаторов влияет ряд причин. Следует отметить, что для практического использования существенно не само значение какого-либо эквивалентного параметра, а его изменение, вызванное переменами влияющего фактора. Динамические параметры кварцевого резонатора определяются физическими константами кварца и размерами. Эти параметры сильно зависят от внешних факторов (например, изменения механического контакта крепления пьезоэлементов в держателе).
Пьезоэлектрики
На самом деле, кварц — это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.
Выглядит минерал кварц примерно вот так.
минерал кварц
Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.
Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация — это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.
пьезоэффект
Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества — пьезоэлектриками.
Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.
Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.
Возможные причины выхода из строя
Слабой стороной КР считается непереносимость перегрева. В случае нагрева платы резонатор теряет свои качества и может разрушиться. Учитывая хрупкое крепление кристалла, резонатор нужно уберегать от случайных ударов. В результате резкого толчка кварцевая пластинка может потерять устойчивость и выпасть из рамки.
Область применения кварцевых резонаторов постоянно расширяется. Возможность изготовления радиокомпонентов миниатюрных размеров позволяет использовать их в устройствах небольших габаритов. Широкий ассортимент КР, представленный на радиорынке, даёт возможность подобрать нужную модель устройства по доступной цене.
Применение
Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном двоичном счётчике, она даёт интервал времени в 1 секунду.
Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.
Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.
По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).
Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.
Преимущества
- Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
- Малые размеры устройства (вплоть до долей миллиметра).
- Высокая температурная стабильность.
- Большая долговечность.
- Лучшая технологичность.
- Построение качественных каскадных фильтров без необходимости их ручной настройки.
Недостатки
Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.
Заключение
В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — и тогда работа кварцевого резонатора будет меньше беспокоить.
Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.
На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.
Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.
Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.
Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.
Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.
Рис.1. Схема генератора для проверки кварцев.
Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.
А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.
Поводом для создания этого прибора послужило немалое количество накопившихся кварцевых резонаторов как купленных, так и выпаянных с разных плат, причём на многих отсутствовали всякие обозначения. Путешествуя по бескрайним просторам интернета и пробуя собрать и запустить различные схемы кварцевых тестеров, было решено придумать что-нибудь своё. После многих экспериментов с разными генераторами как на разных цифровых логиках, так и на транзисторах, остановил выбор на 74HC4060, правда устранить автоколебания тоже не удалось, но как оказалось при работе устройства это не создаёт помехи.