Что такое коэффициент использования светового потока и как его рассчитать

Как делать выбор системы подсветки для помещений

Выбор системы освещения должен основываться на нескольких параметрах:

  • вид выполняемых работ;
  • нормативный уровень освещенности, который установлен для каждого конкретного помещения.

Для того чтобы система освещения точно отвечала всем возможным вариантам задач, следует делать выбор в пользу ее комбинированного варианта.

Комбинированное освещение

Но бывают ситуации, когда достаточно только общего освещения. К примеру, им можно обойтись в цехах, гальванических, литейных и т.д. А вот комбинированная подсветка понадобится на сборочных, инструментальных, механических площадках и т.д.

Все показатели, которые нужно учитывать при создании искусственного типа освещения, прописаны в соответствующей регламентирующей документации – СНиП и СанПин. Причем здесь имеются нормы для всех вариантов внутреннего пространства.

Пример норм освещенности по СНиП

Минимальный уровень светового обеспечения зависит от таких параметров:

  • разряд проводимых зрительных работ;
  • контраст и фон объекта;
  • специфика проведения работ и т. д.

Важным моментом выбора типа освещения считается определение вида лампочки для использования ее в качестве основного источника света. Здесь самым важным при выборе будет экономичность в вопросе потребления электроэнергии

Кроме этого важно учитывать и другие аспекты:

  • планировка;
  • строительные особенности комнаты;
  • состояние имеющейся в помещении воздушной среды;
  • дизайн.

Из источников света можно задействовать:

Металлогалогеновая лампа

  • лампы накаливания. Они малоэкономичны;
  • люминесцентные лампочки. Имеют высокую светоотдачу, цветопередачу, а также низкую температуру;
  • металлогалогеновые лампы (ДРЛ и другие). Большая светоотдача, отличная мощность.

Источники света следует подбирать вместе со светильниками. Лампы подбираются по следующим показателям:

  • требования к экономии;
  • светотехнические параметры;
  • условия имеющейся воздушной среды.

Сами светильники, по светораспределению, бывают двух типов действия:

  • прямого;
  • рассеянного.

Кроме этого, исходя из кривых силы света, осветительные приборы подразделяются на семь групп:

  • концентрированные;
  • косинусные;
  • широкие;
  • полуширокие;
  • глубокие;
  • синусные;
  • равномерные.

В соответствии с параметрами ГОСТа лампы классифицируются по классу защиты от взрыва, воды и пыли. Какой светильник выбрать, определяют по требованиям помещения, в котором он будет функционировать.

Коэффициент запаса

В системах искусственного освещения в течение времени эксплуатации происходит снижение освещенности в результате:

  1. спада светового потока ламп вследствие их старения (ресурс);
  2. выхода из строя ламп в течение срока эксплуатации;
  3. загрязнения оптической системы светильников;
  4. загрязнения светопропускающих поверхностей источников света;
  5. спада КПД светильников вследствие старения светоотражающих и светопропускающих (УФ воздействие на полимеры) материалов;
  6. изменения температуры окружающей среды (необходимо учитывать для светодиодов, компактных люминесцентных ламп, и люминесцентных ламп. (Раньше этот показатель в литературе не указывался, потому что эти типы источников света для улицы не допускались, а в помещении перепад температур значительно меньше).

Значения коэффициента запаса для осветительных установок искусственного освещения могут быть снижены в зависимости от эксплуатационных групп светильников. Эксплуатационная группа светильника определяется конструктивно-светотехнической схемой светильника, типом материала или покрытия отражателя и рассеивателя светильника, типом используемого источника света. 1. Светодиодные светильники производятся серийно с 2004 года. За это время практическую наработку более 6 лет имеют уже свыше 7000 серийных изделий, причем эксплуатация их продолжает сегодня.

Были проведены замеры освещенности светильников в начале эксплуатации на объектах различного применения. Применяемые в светильниках высокачественные светодиоды Nichia (Япония) не подверглись деградации и сохранили свои технические параметры, соблюдены все условия эксплуатации их в готовых изделиях. Специально разработанные конструкции светильников обеспечивают необходимый теплоотвод светодиодов, что еще существенно повышает их ресурс. Данное снижение освещенности у светодиодных светильников УСС отсутствует, это доказано практически и подтверждено исследованиями многочисленных лабораторий.

Тип лампы Параметры освещенности лк, потери
1 год 2 год 3 год
ДРЛ — 30 — 50 % — 50 -90%
ДНАТ — 20% — 10 — 30 %
Светодиодный модуль Отсутствуют Отсутствуют отсутствуют

Результаты исследований за 3 года работы 2. Практически доказано, у светодиодных светильников отсутствует выход из строя светодиодного модуля, ресурс модуля более 23 лет. Выход из строя ламп (светодиодов) в течение срока эксплуатации у светодиодных светильников отсутствует, соответственно это при расчетах учитывать не надо.

3. Загрязнение оптических систем у традиционных светильниках и у светодиодных существует. Этот параметр необходимо учитывать

Для светодиодных светильников важно качество оптического поликарбоната и оптики на светодиодах. Загрязнение пылью и грязью происходит только поликарбоната, оптика светодиодов защищена и находится под стеклом

Также есть светильники без оптики, у которых потери будут ниже. Для расчетов падения на оптических системах для светодиодных светильников следует учитывать только загрязнение защитного стекла. Опять же загрязнение зависит от места и условий эксплуатации светильников.

4. Загрязнения светопропускающих поверхностей источников света у светодиодных светильников отсутствует.

5. Спад КПД светодиодных светильников вследствие старения светоотражающих материалов отсутствует. Были произведены измерения освещенности на объектах после 3 лет работы. Параметры остались на уровне трехлетней давности, в диапазоне погрешности измерений нее более 5%.

Из данного сравнения видно, что для светодиодных светильников нужно убрать некоторые параметры падения светового потока, в следствии чего этот коэффициент уменьшится от традиционных значений.

В зарубежных нормах и стандартах для учета данного фактора используется коэффициент эксплуатации MF. С отечественным коэффициентом запаса он связан соотношением МF= 1/Кз. Из практики, для светодиодных светильников следует брать коэффициент запаса равным 1 — 1,1 для программы DIALux.

Внимание: Данный коэффициент выведен только для светильников. Для изделий других производителей светодиодных светильников, пониженный коэффициент не известен

Для определения коэффициента необходимо учитывать: токи на светодиодах (степень разгона светодиодов, если это существует); температуры кристаллов; наличие радиаторов; наличие защитного стекла; степень защиты от пыли и влаги; место эксплуатации.

Задача №1 — расчёт мощности светильника

Я столкнулся c первой задачей. То есть я решил, каким образом будут располагаться светильники и для осуществления моей задумки, я расположил девять светильников в виде буквы «П»:

Соответственно мне необходимо было определить, каким световым потоком должен обладать светильник, чтобы обеспечить требуемую освещённость на кухне, а по световому потоку выбрать марку и модель светильника.

Для расчёта требуемого количества светильников нам необходимо знать нормативную освещённость, которая устанавливается СНиП 23-05-95* — «Искусственное и естественное освещение». Согласно данного СНиПа для кухни Ен=150 лк

Площадь моей кухни равна 5 кв.м, S=5

Количество светильников: N=9

Теперь осталось разобраться с коэффициентами:

К – коэффициент запаса, также как и нормативная освещённость принимается по СНиП 23-05-95 (для жилых помещений 1,4 – 1,5), я принял К=1,4

Z – коэффициент неравномерности, принимается в зависимости от типа ламп и находится в пределах 1,0-1,2, для светодиодных светильников допускается принять Z=1,0

η – коэффициент использования светового потока, зависит от индекса помещения, отражающих поверхностей и типа ламп. Вообще данный коэффициент принимается по специальным таблицам, их можно найти на сайтах производителей ламп. На данный момент, я смог найти таблицы только для люминесцентных и ртутных ламп, всё-таки светодиодные лампы только набирают обороты, и информации для расчётов практически нет, но при всём этом, одну из таких таблиц активно используют сайты, продающие светодиодное оборудование: вот один из них — http://diode-system.com/kak-rasschitat-kolichestvo-svetilnikov.html А если используют профессионалы, то почему бы не воспользоваться и нам?

Таблица коэффициентов использования светового потока:

Теперь нужно понять, как ей пользоваться. Мы видим, что коэффициент использования светового потока зависит от индекса помещения и от коэффициентов отражения поверхностей потолка, стен и пола. Для коэффициентов отражения приведены наиболее распространённые варианты. Например: схема 0,7-0,5-0,3 (четвёртый столбик таблицы) соответствует помещению с белым потолком, светлыми обоями, и напольным покрытием, которое темнее обоев (это наиболее распространённый вариант)

Примерные коэффициенты отражения приведены в таблице ниже:

Согласно таблицы, для моей кухни подойдёт схема 0,7-0,5-0,3

Теперь рассчитаем индекс помещенияi. Этот параметр напрямую зависит от габаритов помещения и высоты рабочей поверхности. Если рабочей поверхностью считают стол, то обычно hраб=0,8 м. Для кухни рабочей поверхностью является: стол, плита, столешница, мойка, а они, как правило, имеют высоту 0,8-1,0 м, поэтому я принимаю hраб=0,8 м

Теперь рассчитаем расчётную высоту. Расчётная высота – это расстояние от светильника до рабочей поверхности, в моём случае светильники точечные встраиваемые, то есть расчётная высота будет измеряться от плоскости потолка до рабочей поверхности:

Сам индекс помещения рассчитывается по формуле:

a и b – соответственно ширина и длина помещения.

Округляем индекс помещения в большую сторону из ряда: 0,6; 0,8; 1,00; 1,25 и т.д. (смотрите второй столбец таблицы). Соответственно я принимаю 0,8

Теперь у нас есть все данные, чтобы определить коэффициент использования светового потока, пользуемся таблицей и получаем, что η = 0,39

И так, подставляем все данные в формулу для определения светового потока одного светильника:

То есть световой поток одного светильника будет равен 299 люмен. Это ориентировочно светодиодные светильники мощностью 3,5-4 Вт (см. таблицу ниже)

То есть для моей кухни подойдёт 9 светодиодных ламп мощностью 3,5 — 4 Вт (≈ 299 лм). Заходим в интернет и находим светильники соответствующей мощности, на всякий случай смотрим такой параметр, как световой поток (чтобы он был не менее нашего расчётного).

Вот, что удалось найти сразу:

Самое главное не ошибитесь с типом лампы, её цоколем и патроном. В своих точечных светильниках я использовал лампы с типоразмером MR16 и цоколем GU-5.3

Особенности, технические параметры светодиодного источника света

LED лампы на сегодняшний день активно вытесняют с рынка светотехнической продукции прочие световые источники. Они намного эффективнее и экономичнее в плане расходования электрической энергии, а также отличаются наиболее максимальным сроком эксплуатации.

Мнение эксперта

Иван Зайцев

Специалист по освещению, консультант в отделе строительных материалов крупной сети магазинов

Важно! Светодиодные элементы – это световые источники современного поколения, которые принципиально отличаются от стандартных лампочек с нитью накаливания и люминесцентных моделей светотехники

Как выбрать

Выбор освещения для помещения должен быть сделан, исходя из выбора системы освещения, определения по законодательным нормам количество света, материала настенных и напольных поверхностей, типа и числа осветительных устройств, коэффициента пульсации

Важно отметить, что итоговый результат будет зависеть от того, какой цвет имеют сами светильники. Кроме того, есть типы осветительных устройств, которые имеют плохую освещенность, это, например, лампы накаливания. Хорошим будет выбор в пользу люминесцентных и светодиодных приборов

Хорошим будет выбор в пользу люминесцентных и светодиодных приборов.

Обратите внимание! Сегодня в сети нашли большое распространение различные калькуляторы, в которые уже встроены необходимые формулы. Все, что нужно пользователям, это подставить свои значения или выбрать конкретный вид светильника, а затем нажать соответствующие клавиши. Еще одним альтернативным способом подсчета всех необходимых данных будет использование профессиональной помощи электрика, который не просто сможет подобрать по санитарным нормам освещенность, но и порекомендовать лампы, которые будут экономично тратить электроэнергию

В результате, пользователь получит не только грамотный расчет, но и дальнейшее экономное использование осветительного оборудования

Еще одним альтернативным способом подсчета всех необходимых данных будет использование профессиональной помощи электрика, который не просто сможет подобрать по санитарным нормам освещенность, но и порекомендовать лампы, которые будут экономично тратить электроэнергию. В результате, пользователь получит не только грамотный расчет, но и дальнейшее экономное использование осветительного оборудования.

Светодиодная лампа: конструкция и основные технические характеристики

Светодиодная лампа — источник света, излучение которого осуществляется за счет использования в конструкции нескольких светодиодов, соединенных в одну цепь. В отличие от других разновидностей ламп в ней не используется вольфрамовая нить накаливания, различные газы, ртуть и другие компоненты, опасные для жизни человека. Она экологически чистое устройство, не выделяющее вредных веществ во время работы и выхода из строя. По своим энергосберегающим показателям она самая экономная среди аналогов. Может использоваться для освещения улиц, промышленных или жилых объектов и помещений.

Конструкция данной лампочки состоит из следующих элементов: рассеивателя, светодиодов, монтажной платы, радиатора, блока питания, корпуса и цоколя. Последний элемент может иметь два типоразмера патрона: Е14 (маленький) и Е27 (большой).

При выборе необходимо руководствоваться значениями основных характеристик:

  • Световой поток, измеряется в лм (люмены). Количество света, которое распространяется во всех направлениях от источника света.
  • Мощность, единица измерения Вт. Количество потребляемой энергии за единицу времени.
  • Цветовая температура свечения, единица измерения К. Определяет цвет светового потока, исходящего от источника излучения. У ламп накаливания в основном 3000К, это «теплый», желтоватый оттенок. Светодиодные источники света бывают разные, от 3000К до 6500К («холодный» цвет, с небольшой примесью синего).
  • Светоотдача, измеряется в лм/Вт. Характеристика, определяющая эффективность и экономность источника света. У изделий разных производителей, она, конечно же, разная.
  • Температура нагрева, единица измерения °C. Указывает на рабочую температуру нагрева стеклянной поверхности лампы.
  • Срок службы, измеряется в часах. Определяет максимальный срок эксплуатации в оптимальных и заявленных производителем условиях.
  • Индекс цветопередачи, CRI. Измеряется в пределах от 0 до 100 баллов. Для оптимального восприятия человеком цветопередачи от источника свет, чем больше баллов, тем выше. Нормальным считается значение 80 CRI.

Данная разновидность энергосберегающей лампочки может производиться двух типов: стандартное (грушевидная форма) и в виде «кукурузы». Этот фактор необходимо учитывать при замене источника света в светильнике. Последний вид не рекомендуется использовать, поскольку в такой конструкции светодиоды располагаются с наружной стороны.

Методы расчета освещения

Расчету подлежит как естественное, так и искусственное освещение. При этом, если задачей расчета первого является определение требуемой площади световых (то есть оконных) проемов, то для расчета потребности в искусственном свете существует целый ряд методов:

  • метод коэффициента,
  • точечный метод,
  • метод удельной мощности.

Каждый из них нуждается если не в подробном рассмотрении, то хотя бы в ознакомлении с главными его принципами.

Метод коэффициента

Метод коэффициента является основным способом расчета общего равномерного освещения. Он применим, в первую очередь, для производственных и общественных помещений с небольшим количеством мебели и иных предметов, поверхности стен, пола и потолка которых обладают достаточно большим коэффициентом отражения.

Расчет освещения

Этот метод включает в себя определение следующих параметров:

  • расчетная высота подвеса светильников;
  • расстояние между рядами светильников;
  • число рядов светильников;
  • расстояние от крайнего ряда до стены;
  • расчет количества светильников в одном ряду;
  • определение мощности каждого светильника.

Как вы можете понять, данный метод расчета помогает полностью воссоздать картину оптимально расположения осветительных приборов на потолке и определиться с выбором их мощности.

Точечный метод

Точечный метод применяется для расчета локализованного и местного освещения, освещения наклонных поверхностей, а также для уточнения и проверки расчета равномерного общего освещения для помещений с малыми коэффициентом отражения. В соответствии с указанной методикой, освещенность рассчитывается в каждой точке рассматриваемой поверхности с учетом каждого источника освещения. Трудоемкость такого метода невероятно высока.

Метод удельной мощности

Метод удельной мощности является наиболее простым из всех перечисленных и при этом наименее точным методом. Поэтому его можно считать не столько расчетным, сколько оценочным. Несмотря на это, данный способ определения необходимого в комнате освещения нашел широкое применение при планировании схемы монтажа осветительных приборов в квартирах, частных домах и офисных помещениях.

Освещение светодиодными лампами

Для реализации описываемого метода расчета освещения по площади помещения следует воспользоваться нижеприведенными таблицами.

Первая из них дает информацию о примерном световом потоке, создаваемым той или иной лампочкой, одновременно сравнивая по мощности различные их виды.

Мощность источника света, Вт Световой поток, Лм
Лампа накаливания Люминесцентная лампа Светодиодная лампа
25 5-7 2-3 250
40 10-13 4-5 400
60 15-16 6-10 700
75 18-20 10-12 900
100 25-30 12-15 1200
150 40-50 18-20 1800
200 60-80 25-30 2500

Другая, в свою очередь, содержит данные о нормативной, соответствующей Строительным нормам и правилам (СНиП), освещенности помещений в зависимости от их назначения.

Соблюдение норм освещения

Тип помещения Норма освещенности, Лк
Жилые комнаты и кухни 150
Детские комнаты 200
Ванные, душевые, туалеты, санитарные узлы 50
Коридоры и холлы 50-75
Гардеробные 75
Кабинеты, библиотеки, офисы 300
Лестницы 20
Сауны и бассейны 100
Подсобные и кладовые помещения 50

Важно! Норма освещенности – это количество света на единицу площади помещения, необходимое для комфортного освещения. Иными словами, освещенность – это световой поток, освещающий единицу площади, т.е

1 Люкс (Лк) = 1 Люмен (Лм)/ 1 кв.м.

Норма освещенности

Альтернативы ручному расчету уличной освещенности

Чтобы реальность после установки фонарей или прожекторов соответствовала ожиданием, необходимо учитывать массу факторов. На итоговый результат могут повлиять свойства ламп, угол наклона опор, нацеливание и ослепленность, варианты размещения светоприборов и многое другое. Учесть большое количество факторов и минимизировать ошибку помогают программные продукты.

Самые популярные среди проектировщиков:

·Dialux – способен учитывать даже погодные условия, строить 2-мерные и 3-мерные модели, создавать видео-визуализацию.

·Light-in-Night Road – мощный инструмент для онлайн расчета уличного освещения различных объектов от локальных автодорог до многоуровневых дорожных развязок, магистралей и эстакад.

·NanoCAD – позволяет делать точные вычисления и создавать проектную документацию, имеет достаточно простой интерфейс.

Перечисленные сервисы имеют как бесплатные, так и коммерческие версии, дополнены базами светильников, открывают широкие возможности визуализации. Программы – это еще отличная возможность для проверки и анализа правильности проделанных вычислений. Кроме того, их использование необходимо, когда речь идет об индивидуальном проекте, например, парка отдыха с уникальной планировкой и персональным ландшафтным дизайном.

Еще одна альтернатива использования формул – калькулятор уличного освещения. Достаточно ввести необходимые параметры, и через пару секунд вы получите искомый результат.

Как и в чем измеряется

С появлением ламп, у которых используемая мощность в ваттах стала отличаться от яркости, возник вопрос, как измерить потоки света.

Методика расчёта освещения в бытовых и производственных помещениях

Единицы измерений светового потока 1 люмен – это свет, отдаваемый излучателем с силой в 1 кд в рамках телесного угла в 1 стерадиан. Обозначается буквой Ф.

Для информации. Лампа с нитью накаливания в 100 Вт выдаст поток света, равный 1000 лм. Чем ярче светильник, тем он больше люмен выдаст.

Небольшой перечень приборов, которые применяются для измерения:

  • портативный люксметр;
  • сферический фотометр;
  • люксметр-пульсметр.

Самостоятельно проверить соответствие параметров приобретённого осветительного прибора можно люксметром CEM DT-1300. При помощи этого прибора определяют уровень освещения поверхности или помещения. В комплекте – выносной сенсор, который регистрирует интенсивность потока. Дисплей отображает показания в единицах – Lux или FC. На выполнение измерения необходимо 1,5 секунды.

Что касается точности измерения световых параметров, то сложность заключается в том, что световое излучение – это поток, движущийся во всех направлениях. В лабораторных условиях используют сферические фотометры. Источник помещают в сферу, имеющую высокое оптическое использование измерения.

Интересно. Любая лампочка при излучении имеет пульсацию. Завышенный коэффициент пульсации при тусклом освещении вызывает усталость глаз и со временем снижает зрение. Измерить пульсацию осветительных приборов можно с помощью люксметра – пульсметра.

Заключение

Метод КИСП, несмотря на всю свою сложность, при правильном исполнении алгоритма и всех расчетов даст вам правильные искомые значения, чем поможет рассчитать уровень общего освещения для различного рода помещений, при использовании в нем разных разновидностей источников света и моделей осветительных приборов.

Искусственное освещение бывает:
общее, местное и комбинированное.

Задачей расчета является определение потребной мощности электроосветительных установок для создания в производственном помещении заданной освещенности, или при известном числе ламп и их мощности определить ожидаемую освещенность на рабочей поверхности.

Проектируя осветительные установки необходимо решить ряд вопросов:

1.Выбрать тип источника света (где температура воздуха меньше, чем +10°С и меньше 90% от номинального напряжения – лампы накаливания, в др. случаях – люминисцентные лампы.

2. Выбрать систему освещения – общая, местная, комбинированная. Более экономичнее система комбинированного освещения, система общего освещения более гигиенична.

3. Выбрать тип светильников – с учетом загрязнения воздушной среды, взрыво- пожаробезопасности.

4. Произвести распределение светильников и определить их количество.

5. Определить нормирование освещения на рабочем месте – от характера выполняемой работы, системы освещения, источников света.

Расчет искусственного освещения ведут тремя основными методами:

1. По коэффициенту использования светового потока;

2. Точечный метод;

3. Метод Ватт (удельной мощности)

Применяется еще графический метод профессора А. А. Труханова.

Для расчета общего равномерного освещения при горизонтальной рабочей поверхности

основным является метод коэффициента использования светового потока. Световой поток

лампы F Л при лампах накаливания или световой поток группы ламп светильника при люминисцентных лампах расчитывают по формуле:

где – нормированная минимальная освещенность,лк;

Площадь освещаемого помещения, м 2 ;

Коэффициент минимального освещения, 1,1-1,5;

Коэффициент запаса, 1,4 – 1,8;

Число светильников в помещении;

Коэффициент использования светового потока ламп, %.

Значение коэффициента определяется по таблицам в зависимости от коэффициента отражения светового потока и показателя помещения , определяемого по формуле:

где , – размер помещения, м;

Высота светильников над расчетной поверхностью, м.

Подсчитав световой поток F по таблице подбирают ближайшую лампу и определяют мощность всей осветительной системы.

Точечный метод применяется для расчета локализованного местного освещения, освещения наклонных плоскостей и для проверки расчета равномерного общего освещения, когда отраженным световым потоком можно пренебречь (рис. 3.12.).

Рис.3.12. Схема для расчёта освещенности точным методом.

В основу точечного метода положено уравнение, связывающее освещенность и силу света:

где – сила света в направлении от источника на заданную точку поверхности;

Расстояние от светильника до расчетной точки;

Угол между нормалью рабочей поверхности и направлением светового потока на источник;

Вводим коэффициент запаса и заменяем на , и тогда

Данные о распределении силы света приводятся в справочниках.

Стекла чистят – при незначительном выделении пыли – 2раза в год, значительное выделение пыли – 4раза в год, светильники – от 4 до 12 раз в год в зависимости от запыленности помещения.

Этот
метод целесообразно применять при
расчёте общего равномерного освещения
горизонтальных поверхностей с учётом
отражённых от стен, потолка и пола
световых потоков. Значения коэффициентов
отражения для различных материалов и
покрытий.

Световой
поток в каждой формуле находится по
формуле:

Ф
= (Е Н ∙
S

К З ∙
Z)
/ (N

)
,

где
Е Н –
заданная минимальная освещённость, лк;

К З
– коэффициент
запаса;

S
– освещаемая площадь, м 2
;

Z
– коэффициент неравномерности равный
– 1,2;

N
– общее количество светильников, шт.;

Справочный
коэффициент светового потока в
относительных единицах.

Индекс
помещения рассчитывают по формуле:

i
= (A

B)
/ ,

где
А, В – длина и ширина помещения, м;

H p
– расчётная
высота, м.

По
найденному световому потоку, пользуясь
справочными данными выбирают тип, размер
лампы и её мощность.

Ф
= (Е Н ∙
S

К З ∙
Z)
/ (N

)
= (100 ∙
864 ∙
1,3 ∙
1,2) / (14 ∙
34) = 283,15

i
= (A ∙
B) / = (72 ∙
12) / = 1,83

Тип
лампы
– ЛЕЦ65.
Мощность
P
= 65 Вт. Напряжение U
= 220В, диаметр 40 мм, Световой поток Ф =
3450.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий