Определяем характеристики диодов
Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.
Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:
Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
Переведите потенциометр в положение максимального сопротивления
Плавно убавляйте его, следите за свечением диода и ростом тока.
Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов
После выхода диода на номинальный ток яркость свечения почти не изменяется.
Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.
Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.
Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.
Таблицы в помощь
Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.
Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).
Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.
После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.
В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.
Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.
SMD светодиоды, характеристики, отличия популярных серий
Дизайн устройства
Эти светодиоды стандартно защищены от перегрева. Стандартные размеры, формы и положения штифтов упрощают автоматическую установку. Такой подход позволяет использовать современные технологии производства и снизить затраты.
2835 SMD LED: параметры, особенности применения
Размеры указаны в маркировке светодиода. 2835 SMD имеет глубину 2,8 мм и ширину 3,5 мм для максимального размера корпуса
Это устройство создано из полимерных материалов, устойчивых к воздействию высоких температур. Они без повреждений выдержат + 240 ° C. Но следует исключить такие экстремальные условия, чтобы не повредить кристалл полупроводника. Типичная деградация качественных продуктов этой серии не превышает 5% за 3 тысячи часов. Особенности. В этой серии происходит увеличение размеров контактных элементов для ускорения отвода тепла.
Технические характеристики SMD 2835 приведены в таблице:
<td>25; 60; 150; 300
Параметр | Единица измерения | Величина (диапазон) |
Рост | мм | 0,8 |
Потребляемый ток | но | |
Сила кристаллов | W | 0,09; 0,2; 0,5; 1 |
Падение напряжения | В | 3,2 |
Бытовые лампы
Хорошие технические характеристики 2835 LED дополняются доступной стоимостью. Эти устройства используются для изготовления недорогих ламп, светодиодных лент.
Характеристики светодиодов 5050
Конструкция и особенности кабельного подключения
Продукция этой серии отличается хорошими характеристиками при компактных размерах. Именно на их основе со временем были созданы первые специализированные лампы для автомобильной техники — светодиодные ленты. Разработчикам удалось разместить в небольшом корпусе три кристалла, которые при потреблении 1 Вт способны обеспечить световой поток до 80 люмен.
Из этих компонентов была создана первая «кукуруза», полностью заменившая традиционные лампы накаливания мощностью 80-100 Вт
Скорость деградации за 3 тысячи рабочих часов в этих продуктах была снижена на 20% по сравнению с предыдущим примером (серия 2835). В некоторых модификациях стали использоваться диоды разного цвета комбинации RGB. Используя соответствующие контроллеры, вы можете организовать раздельное управление кристаллами.
Параметр | Единица измерения | Величина (диапазон) |
Индекс CRI (цветопередача) | РА | 80-90 |
Потребляемый ток | но | 20 * 3 = 60 |
Сила кристаллов | мВт | 210 |
Падение напряжения | В | 3.3 |
Угол свечения | градусы | 125 |
Поток света | lm | 18 |
Светодиоды SMD 5730: характеристики, важные нюансы
Эти устройства являются развитием популярной серии 5050. В таблице приведены средние данные для продуктов известных брендов, использующих цветовую температуру кристаллов на уровне 6 тысяч Кельвинов.
Параметр | Единица измерения | Величина (диапазон) |
Поток света | lm | 55 |
Потребляемый ток | но | 150 |
Сила кристаллов | мВт | 210 |
Падение напряжения | В | 3,4 |
Угол рассеивания | градусы | 120 |
Значительно увеличены световой поток и мощность. Лучшее рассеивание тепла. Ухудшение за контрольное время 3000 часов не превышает 1%. Эти устройства могут использоваться в цепях с импульсным питанием (до 170 мА).
Размеры светодиодов разных серий
Мощные светодиоды Cree
Если вам нужны сверхяркие светодиоды на 3 Вольта, стоит обратить внимание на продукцию этого производителя из США. Под брендом Cree они производят мощные автомобильные источники света, проекторную технику, стационарные и портативные проекторы
Под брендом Cree они производят мощные автомобильные источники света, проекторную технику, стационарные и портативные проекторы
Особенности светодиодов Cree XM-L Series:
Параметр | Единица измерения | Величина (диапазон) |
Поток света | lm | 165-300 (максимум — более 1000 мл) |
Потребление тока (номинальное) | но | 700 |
Власть | W | 2 |
Индекс CRI (цветопередача) | РА | 80-90 |
Падение напряжения при токе | В / мА | 2,9 / 700; 3,1 / 1500; 3,35 / 3000 |
Угол свечения | градусы | 125 |
Рабочая температура | ° C | От -40 до +85 |
Светодиоды XHP35 с улучшенными характеристиками подходят для изготовления фонарей большой мощности
Эти устройства рассчитаны на максимальное потребление тока до 1050 мА, мощность до 13 Вт. Падение напряжения составляет 11,3 В при 350 мА. Индекс цветопередачи более 90 гарантирует отсутствие искажений в цветопередаче.
Для достижения этих характеристик были созданы сверхяркие светодиоды этой серии по специальной технологии. Мощное излучение с равномерным распределением в спектре обеспечивается четырьмя участками в кристалле. Это решение позволило уменьшить габариты, повысить прочность конструкции и устойчивость к механическим воздействиям.
Почему светодиоды на конце ленты теплого белого света / розового цвета на конце при движении белого цвета?
Это происходит из-за падения напряжения на светодиодной ленте при попытке питания большей длины ленты. В результате падения напряжения пиксели вдоль ленты будут постепенно меняться в цвете, если их приводить в движение белым цветом. Лучше всего определить максимально возможную длину пробега до того, как падение напряжения начнет влиять на их цвет, и вводить мощность через каждые х метров.
p, blockquote 39,0,0,0,0 —>
p, blockquote 40,0,0,0,0 —>
Чем больше падение напряжения вдоль ряда белых светодиодов, тем более розового оттенка будут появляться самые дальние от источника питания. Вся длина также будет незначительно уменьшаться по мере снижения напряжения. Большинство лент и точек отображают эти явления очень тонко, в то время как некоторые другие могут быть немного более выраженными. Аналогично, степень, в которой человеческий глаз воспринимает это, будет естественно отличаться от человека к человеку, но большинство людей найдут изменение цвета практически неразличимым.
p, blockquote 41,0,0,0,0 —>
(ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: приведенный выше чертеж не предназначен для точной научной диаграммы. Это простое визуальное представление, чтобы дать вам приблизительное представление о том типе эффекта, который вы иногда можете наблюдать, когда происходит различный процент падения напряжения.). p, blockquote 42,0,0,0,0 —>
p, blockquote 42,0,0,0,0 —>
Расчет мощности светодиодных ламп
На реализацию приборы поступают упакованными в коробки, с размещённой на ней необходимой информацией. Следует посмотреть количественную характеристику изделия, индекс цветопередачи, показатель яркости. Вот тут некоторые потребители сомневаются, как узнать мощность светодиода, если раньше пользовались только лампами накаливания.
Чтобы правильно заменить устаревший тип освещения, отличным помощником для правильного выбора послужит приведённая ниже сравнительная таблица соответствия мощности светодиодных ламп и ламп накаливания:
Световой поток, Лм | Потребляемая мощность лампы накаливания, Вт | Потребляемая мощность светодиодной лампы, Вт |
250 | 20 | 2-3 |
400 | 40 | 4-5 |
700 | 60 | 8-10 |
900 | 75 | 10-12 |
1200 | 100 | 12-15 |
1800 | 150 | 18-20 |
2500 | 200 | 25-30 |
Глядя на нее гораздо проще сделать выбор. Соответственно световому потоку, равному 1200 Люмен лампочке накаливания номиналом 100Вт соответствует светодиод в 12-15Вт. Что мы можем увидеть при сравнении в приведенном выше списке светодиодных ламп и привычных для обычного покупателя ламп накаливания? Последние изделия намного экономичнее, примерно в 8 раз. А это, согласитесь, весомая разница. Причём яркость двух световых источников одинаковая.
Практическая часть: проверка различных светодиодов
С проверкой одиночного элемента все понятно: необходимо просто подать напряжение (значение должно быть немного выше напряжения падения) на ножки светодиода. Это можно сделать при помощи тестера: на его контактах есть напряжение порядка 5 вольт и ограничитель тока в виде внутренних резисторов.
Таким образом, проверяется исправность, но не соответствие рабочим параметрам.
Если надо протестировать характеристики, потребуется специальный прибор для проверки светодиодов. Он должен состоять из регулируемого источника питания (регулировка по току и напряжению), вольтметра, амперметра и люксометра (для замера яркости свечения).
Такие приборы есть в продаже, или изготавливаются самостоятельно (это объемный материал для отдельной статьи).
Но проверка одиночного элемента, как правило, нужна перед его установкой. В основном диоды проверяют в устройствах.
Как проверить гирлянду на светодиодах?
В первую очередь, визуально. Если последовательные LED элементы имеют защиту от неисправности, при перегорании одного диода он переходит в режим короткого замыкания. То есть, ток через него протекает, но он не светится.
Если такой опции нет, проверяется последовательная цепь. Необходимо соединить один щуп мультиметра к плате управления гирляндой на светодиодах, и последовательно проверять цепь после каждого элемента (соблюдая полярность).
Место обрыва цепи – это неисправный элемент. Его можно затем проверить отдельно, для достоверности.
Как проверить светодиоды в светодиодной лампе?
Как правило, внутри светильника расположена матрица из множества LED элементов. Они соединены последовательно, и подключены к общему блоку питания (драйверу).
Проверить СМД светодиод можно, не выпаивая его из монтажной платы. Для этого просто подключаем щупы мультиметра в режиме прозвонки. Исправные элементы будут светиться.Проверяем светодиоды в лампе — видео
То есть, SMD элементы проверяются по такой же методике, как и DIP. Сопротивление остальной сборки, как и блока питания, на результат не влияют.
Как проверить инфракрасный светодиод?
Если достаточно узнать, пробит он или нет – проверка проводится как на обычном диоде. В одну сторону есть ток, в другую нет. Визуальная проверка возможна с помощью фотоаппарата или камеры смартфона.
Надо подать соответствующее питание на элемент, и посмотреть на него через экран смартфона или фотоаппарата. Свечение явно видно: таким способом обычно проверяют исправность пульта от телевизора.
Обратите внимание
Если вы проверяете светодиод подачей питания на ножки, лучше делать это через резистор 10-100 Ом. Напряжение должно быть в диапазоне 3-5 вольт
Без резистора вы можете превысить силу тока, и LED элемент просто сгорит.
А вот для того, чтобы проверить ультрафиолетовый светодиод, никаких дополнительных приспособлений не требуется.
Единственное ограничение – отсутствие прямого солнечного света, и полумрак в помещении. Иначе вы просто не увидите, как он светится. Напряжение и сила тока, как у стандартного диода.
Ток светодиода. Как определить ток светодиода
Светодиоды широко используются в современной электронной аппаратуре. К числу их несомненных достоинств относятся небольшие размеры и яркое свечение. Но для того чтобы светодиод исправно работал, необходимо правильно установить его рабочий ток.
Вам понадобится
– тестер (мультиметр);
Инструкция
1
Светодиоды могут исправно служить многие годы, одна быстро выходят из строя, если работают при повышенной силе тока. Чтобы правильно рассчитать силу тока, надо знать напряжение, на которое рассчитан конкретный светодиод.
2
Напряжение питания большинства светодиодов можно определить по цвету их свечения. Так, для белых, синих и зеленых светодиодов напряжение питания обычно составляет 3 В (допустимо до 3,5 В). Красные и желтые светодиоды рассчитаны на питающее напряжение 2 В (1,8 – 2,4 В). Большинство обычных светодиодов рассчитаны на ток 20 мА, хотя есть светодиоды, для которых сила тока может превышать 150 мА.
3
Оценить номинальный ток неизвестного светодиода при отсутствии справочных материалов достаточно сложно. Смотрите на колбу – чем она больше, тем выше обычно номинальный ток. Одним из признаков того, что установленный ток выше допустимого, может являться изменение спектра излучаемого света. Например, если излучение белого светодиода приобретает синий оттенок, то сила тока явно превышена.
4
Не забывайте о том, что светодиоды очень чувствительны к превышению питающего напряжения. Например, включив светодиод, рассчитанный на 2 В, в цепь с двумя последовательно соединенными 1,5-вольтовыми батарейками (в сумме 3 В), вы можете его сжечь.
5
Если используется напряжение питания выше рекомендованного, лишние вольты необходимо погасить добавочным (гасящим) резистором. Рассчитать сопротивление резистора можно по формуле R=U/I. Например, вам надо запитать светодиод на 3 В от бортовой сети автомобиля в 12 В. У вас лишние 9 В. При номинальном токе светодиода 20 мА (0,02 А) вы получите нужное значение, поделив 9 на 0,02 – это будет 450 Ом.
6
Собрав схему со светодиодом, обязательно измерьте потребляемый им ток, включив тестер в разрыв цепи. Если ток превышает 20 мА, его надо уменьшить, увеличив номинал резистора. Чуть меньший ток – например, 18 мА, только пойдет светодиоду на пользу, увеличив срок его службы.
7
Следите за правильностью подключения светодиода. К плюсу источника питания подключается анод, к минусу – катод. Катод имеет более короткий вывод, на колбе с его стороны сделан срез (плоская площадка).
Важные параметры светодиодов
С точки зрения проблемы подбора резистора для светодиода нас в первую очередь интересуют всего два параметра светодиодов:
- I F — прямой ток светодиода
- V F — прямое напряжение светодиода (рабочее напряжение)
Рассмотрим это на примере светодиода L-53IT. Вот его краткие характеристики:
- Материал: gaasp/gap
- Цвет свечения: красный
- Длина волны: 625нм
- Максимальное прямое напряжение: 2,5 В
- Максимальное обратное напряжение: 5В
- Максимальный прямой ток: 30мА
- Рабочая температура: -40…85С
В datasheet светодиода L-53IT в разделе «Absolute Maximum Ratings» (значения, которые нельзя превышать) мы находим информацию о максимальном непрерывном постоянном токе, который может протекать через данный светодиод, не вызывая ее повреждения (30мА):
Затем мы проверяем по datasheet, какое типичное прямое напряжение светодиода (падение напряжения на диоде):
и мы видим, что:
- тестовые данные указаны для тока I F = 20мА,
- типичное прямое напряжение составляет V F = 2В.
Ток 20мА обеспечивает нам хороший световой поток, а так как светодиоды не вечны, и со временем испускаемый поток света уменьшается, то в большинстве случаев для данного светодиода этот ток будет достаточен.
Как узнать какой светодиод стоит в лампе
Самый простой вариант – если лампа полностью исправна. В этом случае надо просто измерить падение напряжения на любом из элементов. Если при подаче питания один или несколько элементов не светят (или все), надо идти другим путем.
Если лампа построена по схеме с драйвером, то на драйвере указано выходное напряжение в виде верхнего и нижнего пределов. Это связано с тем, что драйвер стабилизирует ток. Для этого ему надо изменять напряжение в определенных границах. Фактическое напряжение придется измерить мультиметром и убедиться, что оно в норме. Далее визуально (по дорожкам печатной платы) определить количество параллельных цепочек светодиодов в матрице и количество элементов в цепочке. Напряжение драйвера нужно разделить на число последовательно соединенных элементов. Если напряжение на драйвере не обозначено, то его можно лишь замерить по факту.
Драйвер на рабочий ток 300 мА и выходное напряжение 45-64 В.
Если светильник построен по схеме с балластным резистором и его сопротивление известно (или его можно измерить), то напряжение светодиода можно определить расчетным способом. Для этого надо знать рабочий ток. В этом случае надо рассчитать:
- падение напряжения на резисторе – Uрезистора=Iраб*Rрезистора;
- падение напряжения на цепочке LED – Uled=Uпитания – Uрезистора;
- разделить Uled на количество приборов в цепочке.
Если Iраб неизвестен, его можно принять равным 20-25 мА (схема с резистором применяется для маломощных фонарей). Точность будет приемлема для практических целей.
Мир светодиодов: краткий обзор предложений современных производителей
Первые удачные эксперименты были проведены более ста лет назад. Но только в конце 70-х прошлого века удалось создать образцы, пригодные для коммерческого применения.
Разные комбинации полупроводниковых материалов создают волны определенной длины
Для зеленого цвета применяют AlGaInP (Алюминий-Галий-Фосфид индия). Красный получается с использованием AlGaAs (Алюминий-Арсенид галлия). Долгое время не могли найти комбинацию для синего. Только в 90-х годах был найден подходящий состав, за который авторы получили Нобелевскую премию. Сочетание перечисленных цветов позволило создать белый свет. С этого времени был дан старт массовому внедрению технологий данной категории в разные сферы человеческой деятельности.
Индикаторные светодиоды
Конструкция прибора DIP типа
Для концентрации светового потока функции отражателей выполняет опорная пластина и стенки. Такие приборы выпускают с выпуклыми линзами и прямоугольными торцами диаметром от 3 до 10 мм. Их подключают к источникам питания 2,5-5 В с ограничением по току до 20-25 мА. Угол рассеивания не превышает 140°. Яркость – до 1,1 люмен.
Индикаторные светодиоды ранее применяли для создания фонарей, светофоров, информационных стендов и рекламных табло. В наши дни появились новые модификации полупроводниковых приборов с большей силой света.
Оригинальная подсветка сценических костюмов
На практике пригодятся следующие преимущества индикаторных светодиодов:
- низкая стоимость;
- хорошая защищенность от влаги и других неблагоприятных внешних воздействий;
- безопасные токи и напряжение питания;
- небольшое потребление энергии.
Последний пункт надо дополнить низким выделением тепла. Такие устройства способны функционировать долгосрочно в широком температурном диапазоне без специальных охлаждающих радиаторов.
Осветительные светодиоды
Полупроводниковые приборы SMD, как наиболее распространенные изделия, подробно рассмотрены ниже. Их создают в стандартных размерах на специальной подложке, которая хорошо приспособлена для последующего монтажа на печатную плату.
Излучающее поле лампы, созданное из SMD светодиодов
Для улучшения защищенности полупроводники закрепляют на подложке внутри литого пластикового корпуса. Верхняя полусферическая часть образует линзу, что помогает сузить световой поток.
«Пиранья». Грозное название этой категории подчеркивает высокую эффективность приборов
Следующая группа изделий создана специально для освещения. На подложке размещают синие светодиоды. Сверху – слой люминофора. В данном случае применяют большее количество кристаллов на единицу поверхности по сравнению с технологией SMD. Это позволяет получить сильный световой поток.
Мощную матрицу категории COB (Chip On Board) надо охлаждать. Такие лампы устанавливают в автомобильные фары ближнего и дальнего светаТехнология Chip On Glass («Чип-на-стекле»)
На фото изображены основные стадии производственного процесса:
- Создается подложка из стекла нужной формы.
- На ней закрепляют последовательно полупроводниковые кристаллы.
- Сверху устанавливают слой люминофора.
- Далее – финишное защитное покрытие.
В цоколе лампочки размещают блок питания, который создает постоянное напряжение с нужной силой тока.
Плюсы и минусы осветительных светодиодов
Выяснив, какие бывают светодиоды, надо перечислить их преимущества по сравнению с альтернативными изделиями:
- Лучшие полупроводниковые приборы способны обеспечить более 200 люменов на 1 Вт энергии. Это потребление на 80-85 % меньше по сравнению с типовыми лампами накаливания.
- Качественные светодиодные светильники устойчивы к вибрациям, перепадам напряжения в сети. Долговечность лучших изделий приближается к 100 тыс. часов, что эквивалентно белее чем 11 годам непрерывной эксплуатации.
- Отсутствие ртутных и других вредных соединений вместе с прочной рассеивающей колбой повышает уровень безопасности.
Не забывайте, что в экономический расчет надо включать все сопутствующие расходы. Светодиодные источники, сделанные известными производителями, стоят дорого. Только через несколько лет получится окупить первоначальные инвестиции. Также надо отметить:
- Мерцание при недостаточно качественной сборке блока питания.
- Небольшой угол рассеивания.
- Различные технические характеристики в одной товарной партии.
- Узкий диапазон цветовой температуры, несоответствие параметра паспортным данным.
Проверка супрессора (TVS-диода)
Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:
Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.
Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.
Использование мультиметра для проверки светодиодов
Все мультиметры относятся к категории универсальных измерительных приборов. С помощью мультиметра можно выполнить измерения основных параметров у любых электронных изделий. Для того чтобы проверить работоспособность светодиода, необходим мультиметр с режимом прозвонки, который как раз и используется для проверки диодов.
Перед началом проверки переключатель мультиметра устанавливается в режим прозвонки, а контакты прибора соединяются со щупами тестера. Данный способ проверки позволяет заодно решить вопрос, как проверить мощность светодиода мультиметром, на основе полученных данных, вычислить этот параметр будет уже несложно.
Подключение мультиметра должно выполняться с учетом полярности светодиода. Анод элемента соединяется с красным щупом, а катод – с черным. Если же полярность электродов неизвестна, не стоит бояться каких-либо последствий в результате путаницы. В случае неправильного подключения, начальные показатели мультиметра останутся без изменений. Если же полярность соблюдается как положено, то светодиод должен начать светиться.
Существует одна особенность, которую следует учитывать при проверке. Ток мультиметра в режиме прозвонки имеет достаточно низкое значение и диод на него может не отреагировать. Поэтому для того чтобы хорошо разглядеть свечение, рекомендуется уменьшить внешний свет. Если же это невозможно сделать, следует пользоваться показаниями измерительного прибора. При нормальной работоспособности светодиода, значение, отображенное на дисплее мультиметра, будет отличаться от единицы.
Существует еще один вариант проверки с помощью тестера. Для этого на панели управления имеется блок PNP с помощью которого проверяются диоды. Его мощность обеспечивает свечение элемента, достаточное для того, чтобы определить его работоспособность. Анод включается в разъем эмиттера (Е), а катод – в разъем колодки или коллектора (С). При включении измерительного прибора светодиод должен гореть независимо от того, в каком режиме установлен регулятор.
Основным неудобством этого способа является необходимость выпаивания элементов. Для решения проблемы, как проверить светодиод мультиметром не выпаивая, для щупов потребуются специальные переходники. Обычные щупы не войдут в разъемы колодки PNP, поэтому к проводкам припаиваются более тонкие детали, изготовленные из канцелярских скрепок. Между ними в качестве изоляции устанавливается небольшая текстолитовая прокладка, после чего вся конструкция заматывается изолентой. В результате, получился переходник, к которому можно подключать щупы.
После этого щупы подключаются к электродам светодиода, без выпаивания его из общей схемы. При отсутствии мультиметра, проверку можно выполнить по такой же схеме с помощью батареек. Используется тот же переходник, только его проводки соединяются не со щупами, а с выходами батареек при помощи небольших зажимов-крокодильчиков. Потребуется один источник питания на 3 вольта или два источника на 1,5 вольта.
Если батарейки новые с полным зарядом, то проверять светодиоды желтого и красного цвета рекомендуется с помощью резистора. Его расчетное сопротивление должно составлять 60-70 Ом, что вполне достаточно для ограничения тока. При выполнении проверки светодиодов белого, синего и зеленого цвета, токоограничивающий резистор можно не использовать. Кроме того, резистор не требуется, когда батарейка сильно разряжена. Для выполнения своих прямых функций она уже не годится, а для проверки светодиодов ее будет вполне достаточно.
В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.
Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.
Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.
Расчет показателей мощности
Чтобы рассчитать мощность светодиода, когда на нем отсутствуют обозначения этого параметра, Вам потребуется его подключить последовательно с резистором в 1,5 кОм. Это позволяет ответить на вопрос, как померить мощность светодиода. При этом, подключать данный элемент необходимо будет в низковольтную сеть. Если Вам требуется точно определить мощность светодиодов, тогда для этого можно использовать следующую таблицу мощности светодиодов на 5 мм:
— Инфракрасный (параметры мощности ниже 2 Вт, ток: 20 мА);
— Красный (параметры составляют значение от 1,7 до 2 Вт, ток: 15-20 мА);
— Оранжевый (параметры мощности: 2 Вт, значение тока: 25 мА);
— Желтый (2,1-2,2 Вт, ток: 20 мА);
— Зеленый (1,9-3,6 Вт, ток: 25 мА);
— Голубой (2,5-3,6 Вт, ток: 20 мА);
— Фиолетовый (2,7-4 Вт, ток: 20 мА).
— Желтый (имеет в конструкции специальный радиатор). Мощность от 2,1 до 2,2 Вт, ток: 30 мА;
— Белый, а также розового цвета (мощность составляет значение 3,2-3,6 Вт, ток: 20 мА).
Зная, какая мощность светодиода, имеется возможность использовать его наиболее эффективно и без перегрузок, что в значительной степени увеличит срок эксплуатации этого прибора.
Классификация
Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).
Принятые обозначения
Типы диодов, указанные на рисунке:
- А – выпрямительный;
- B – стабилитрон;
- С – варикап;
- D – СВЧ-диод (высоковольтный);
- E – обращенный диод;
- F – туннельный;
- G – светодиод;
- H – фотодиод.
Теперь рассмотрим способы проверки для каждого из перечисленных видов.