В чем измеряется сила света
Так как в продаже можно увидеть продукцию разных производителей, не исключены ошибки в процессе изучения сопроводительной документации. Чтобы исключить проблемы, рекомендуется ознакомиться с применяемой терминологией.
Что такое «кандела»
Единичный параметр (1 кандела) соответствует освещенности поверхности световым потоком малой мощности (1/689 Вт/ст). Частота электромагнитного излучения фиксирована – 540 * 1012 Гц.
Люмены и люксы
В люксах (лк) измеряют яркость на площадке. Один лк создает световой поток силой 1 люмен (лм), который падает перпендикулярно на поверхность. Для измерения берут базовую площадь 1 м кв.
Люмен и ватт
Выше рассмотрены комплексный показатель, светоотдача. Однако можно проводить сравнение по люменам, которые создают определенный источник, и количеству потребляемой энергии в Ваттах.
Кратные единицы люмена
Для удобства измерений и записи полученных данных при высокой силе света применяют кратные приставки:
- кило – 103;
- мега – 106;
- гига – 109.
Единицы
Как и другие базовые единицы системы СИ, кандела имеет Рабочее определение – он определяется описанием физического процесса, который будет производить одну канделу силы света. По определению, если создать источник света, который излучает монохроматический зеленый свет с частотой 540 ТГц и интенсивностью излучения 1/683Вт на стерадиан в заданном направлении этот источник света будет излучать одну канделу в заданном направлении.
Частота света, используемая в определении, соответствует длине волны в вакууме 555 нм, что близко к пику реакции глаза на свет. Если источник испускается равномерно во всех направлениях, общая лучистый поток будет около 18,40 мВт, поскольку в сфере 4π стерадиана. Типичная свеча дает примерно одну канделу силы света.
До определения канделы в разных странах использовались различные единицы измерения силы света. Обычно они основывались на яркости пламени «стандартной свечи» определенного состава или яркости нити накаливания определенной конструкции. Одним из самых известных стандартов был английский стандарт: свеча. Одна свеча – это свет, производимый чистым спермацет свеча весом одну шестую фунта, горящая со скоростью 120зерна в час. Германия, Австрия и Скандинавия использовали Хефнеркерзе, блок, основанный на выходе Лампа Хефнера. В 1881 г. Жюль Виоль предложил Violle как единица силы света, и она была известна как первая единица силы света, которая не зависела от свойств конкретной лампы. Все эти единицы были заменены определением канделы.
Как измерить яркость освещения
Измерить яркость можно с помощью специализированного прибора. В качественном яркометре устанавливают:
- объектив с высокой светосилой;
- чувствительную матрицу;
- микропроцессорный блок обработки/ вывода информации.
Если хорошо настроить такой прибор, он сможет измерять силу света на большом расстоянии от источника (отражающей поверхности).
Люксометр
Приборы этой категории создают со встроенным или выносным датчиком. Простейшие стрелочные приборы стоят недорого. Однако пользоваться ими неудобно в труднодоступных местах и при высоком уровне вибраций. Повышенную точность обеспечивают цифровые модели. Фоточувствительный датчик устанавливают на поверхности. После обработки результат измерений отображается на дисплее и записывается в памяти.
Измерение люксометром
Линзы. Оптическая сила линзы
Линза – это прозрачное тело, ограниченное двумя сферическими или криволинейными поверхностями, одна из которых может быть плоской.
Тонкая линза – физическая модель линзы, в которой ее толщиной можно пренебречь по сравнению с диаметром линзы.
Классификация линз
1. По форме:
- выпуклые – это линзы, у которых средняя часть толще, чем края;
- вогнутые – это линзы, у которых края толще, чем средняя часть.
2. По оптическим свойствам:
собирающие – это линзы, после прохождения которых параллельный пучок лучей собирается в одной точке;
рассеивающие – это линзы, после прохождения которых параллельный пучок лучей рассеивается.
Условные обозначения:
Величины, характеризующие линзу
Главная оптическая ось – это прямая, проходящая через центры сферических поверхностей линзы.
Оптический центр линзы – это точка пересечения главной оптической оси с линзой, проходя через которую луч не изменяет своего направления.
Побочная оптическая ось – это любая прямая, проходящая через оптический центр линзы под произвольным углом к главной оптической оси.
Фокус линзы – это точка, в которой пересекаются после преломления лучи, падающие на линзу параллельно главной оптической оси.
Обозначение – \( F \).
Фокусное расстояние – это расстояние от оптического центра линзы до ее фокуса. Обозначение – \( F \), единица измерения – м.
Фокальная плоскость – это плоскость, проходящая через фокус линзы перпендикулярно ее главной оптической оси.
Побочный фокус – это точка пересечения побочной оптической оси с фокальной плоскостью.
Оптическая сила линзы – это величина, обратная фокусному расстоянию.
Обозначение – \( D \), единица измерения – диоптрия (дптр):
1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.
Важно!
Оптическая сила линзы зависит от показателя преломления линзы и от радиусов кривизны сферических поверхностей, ограничивающих линзу:
где \( n_л \) – показатель преломления линзы, \( n_{ср} \) – показатель преломления среды, \( R_1 \) и \( R_2 \) – радиусы сферических поверхностей.
Если поверхности выпуклые, то \( R_1 \) > 0 и \( R_2 \) > 0, если поверхности вогнутые, то \( R_1 \) < 0 и \( R_2 \) < 0.
Если одна из поверхностей линзы плоская, например первая, то \( R_1\to\infty \), а вторая поверхность выпуклая: \( R_2 \) > 0, то
Основные характеристики источников света
Сила света
Определение 2
Точечный источник света – это такой световой источник, размеры которого можно не принимать во внимание, по сравнению с расстоянием от источника до места наблюдения. В оптически однородной и изотропной среде волны, излучаемые точечным источником, являются сферическими
Определение 3
Для характеристики точечного источника используют понятие силы света (I), которая определяется как:
I=dΦdΩ (1),
где dФ – это световой поток, излучаемый источником в пределах телесного угла dΩ. При рассмотрении сферической системы координат можно сказать, что в общем-то сила света зависит от полярного (ν) и азимутального φ углов I=I ν, φ.
Определение 4
Источник света называется изотропным, если на его силу света не оказывает влияние направление. Для изотропного источника света запишем:
I=Φ4π (2),
где Ф – это суммарный световой поток, излучаемый источником во всех направлениях. Величина силы источника, которая вычисляется как (2), также называется средней сферической силой света источника.
Если источник света не является точечным (протяженный источник), тогда применяют понятие силы света элемента его поверхности (dS). В данном случае в формуле (1) величина dФ – это световой поток, излучаемый элементом поверхности источника (dS) в пределах телесного угла (dΩ).
Основная единица измерения силы света в системе измерения – кандела (кд) (старое название – свеча (св)). 1кд излучает световой эталон как абсолютно черное тело при температуре T=2046,6 K (температура, при которой затвердевает чистая платина) и давлении 101325 Па.
Световой поток
Определение 5
Основной единицей измерения светового потока является люмен (лм), который равняется световому потоку, испускаемому источником в 1 кд внутрь телесного угла 1 стерадиан.
Освещенность
Определение 6
Величина (E), равная E=dΦpaddS (5), называется освещенностью. В выражении (5)dΦpad – это величина светового потока, падающего на элемент поверхности dS. Освещенность измеряется с системе измерения в люксах (лк)1 лк=1 лм1 м2 (6), при равномерном распределении потока по поверхности.
Светимость
Протяженный источник света характеризуют светимостью (R) его участков. Она описывает излучение (отражение) света выделенным элементом поверхности во всех направлениях.
Светимость проявляется из-за отражения поверхностью падающего на нее светового потока. Тогда под dΦisp понимают в выражении (8) поток, отражаемый элементарной поверхностью dS во всех направлениях.
Светимость измеряется в люксах.
Яркость
Яркость (B) используют для описания излучения (отражения) света в заданном направлении. Направление причем задается полярным углом ν, который откладывают от внешней нормали n→ к излучающей площадке и азимутальным углом φ.
Определение 7
Ламбертовскими источниками света (или косинусные, подчиняющиеся закону Ламберта), называются источники, яркость которых не меняется в зависимости от направления. Для ламбертовских светильников dI элементарной площадки пропорциональна cos ν.
Единица яркости кандела на квадратный метр кдм2.
Пример 1
Необходимо найти световой поток, излучаемый элементарной поверхностью dS внутрь конуса, ось которого расположена перпендикулярно выделенному элементу. Угол конуса равен ν. Будем считать, что светящаяся поверхность подчинена закону Ламберта и ее яркость равняется В.
Решение
Для решения задачи используем определение яркости и из него выделим элемент светового потока:
B=dΦdΩdScos ν→dΦ=BdΩdScos ν (1.1).
Элементарный телесный угол в сферических координатах равняется:
dΩ=sinνdνdφ (1.2).
Подставим выражение для телесного угла в выражение (1.1), получаем:
dΦ=BsinνdνdφdScosν (1.3).
Определим полный световой поток интегрированием выражения (1.3):
Φ=BdS∫vsinνcosνdν∫2πdφ=πBdSsin2ν.
Ответ: Φ=πBdSsin2ν.
Пример 2
Яркость однородного светящегося диска радиуса r меняется по закону B=Bcosν, B=const, ν– это угол с нормалью к поверхности. Необходимо найти световой поток (Ф), испускаемый диском.
Решение
Выразим элемент светового потока с помощью уравнения из условий задачи для ярости как:
dΦ=BdΩdScosν=Bcosν2dΩdS (2.1),
где элементарный телесный угол в сферических координатах равняется:
dΩ=sinνdνdφ (2.2).
Световой поток вычислим как интеграл от выражения (2.1) при использовании (2.2):
Φ=BdS∫π2sinνcos2νdν∫π2dφ=2πBdS∫π2d(-cos ν)cos2ν=23πBdS==23Bπ2r2.
Ответ: Φ=23Bπ2r2.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Определение и формула длины волн
Волна — это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества.
Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.
Греческая буква «λ» (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.
Период Т — время завершения полного колебания, единица измерения секунды (с).
Длинная волна соответствует низкой частоте, а короткая — высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.
У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.
Пространственный период волны — это расстояние, которое точка с постоянной фазой «пролетает» за интервал времени, соответствующий периоду колебаний.
Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).
При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).
Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 108 м/с поделить на длину в метрах.
Единицы измерения длины волны λ — нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).
Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.
Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной — красный, который составляет около 700 нм.
Таблица показывает длину волны в зависимости от цвета:
Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания.
Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.
Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:
Физические характеристики волны
Два главных параметра волны — частота колебаний f (число полных циклов колебаний в секунду) и длина волны \(\lambda\) — зависят друг от друга.
Зная эти параметры, можно произвести вычисления, чтобы выяснить период повторения колебаний Т и скорость распространения волны v.
Интенсивность волны описывается такими параметрами, как:
- амплитуда;
- плотность энергии;
- плотность потока мощности.
Геометрически волна состоит из гребней и ложбин.
Для продольных волн чаще используют понятия точек максимального сжатия и максимального растяжения.
Для стоячих волн — понятия пучности и узла, характеризующие участки с максимальной и минимальной амплитудой колебаний.
Законы поглощения света. Термины и обозначения
Интенсивность монохроматического светового потока, прошедшего через слой окрашенного раствора, уменьшается по сравнению с первоначальной величиной в зависимости от концентрации окрашенного вещества и толщины слоя раствора. Эти условия выражаются уравнением объединенного закона Бугера-Ламберта-Бера:
Если концентрация раствора выражена в молях на литр, а толщина поглощающего слоя – в сантиметрах, то постоянную E с лямбдой называют молярным коэффициентом поглощения (экстинкции). Он зависит от длины волны падающего света, природы растворенного вещества и температуры раствора
Молярный коэффициент поглощения отражает индивидуальные свойства окрашенных соединений и является их важной характеристикой. Для разных веществ молярный коэффициент поглощения имеет различное значение
Величину lg(I0/I) называют оптической плотностью поглощающего вещества и обозначают буквой D. Оптическая плотность может иметь любые положительные значения, однако современные приборы позволяют определять оптическую плотность, не превышающую 2-3.
Отношение I/I0 = T характеризует пропускание или прозрачность раствора. Величина пропускания Т может изменяться от 0 до 1 или от 0 до 100%. Величину пропускания Т, отнесенную к толщине поглощающего слоя l = 1 см, называют коэффициентом пропускания.
Оптическая плотность и пропускание связаны между собой соотношением D = 2 – lg Т (если Т выражено в процентах). При соблюдении основного закона светопоглощения оптическая плотность раствора прямо пропорциональна молярному коэффициенту поглощения, концентрации поглощающего вещества и толщине слоя раствора:
При графическом изображении зависимости оптической плотности от концентрации (при постоянной толщине слоя l) получается прямая линия, которая проходит через начало координат при отсутствии поглощения света растворителем.
Дисперсия света
Дисперсия света – это зависимость показателя преломления среды от длины волны (частоты) падающего на вещество света.
Опыт Ньютона (1672)
Из-за дисперсии световые волны с различной длиной волны поразному преломляются веществом, что приводит к разложению белого света на цветные монохроматические лучи – спектр.
Для лучей света различной цветности показатели преломления данного вещества различны, т. к. различны скорости распространения электромагнитных волн, у которых разная длина волны. Луч красного света преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового цвета наименьшая. Это объясняется особенностями взаимодействия этих волн с электронами, входящими в состав атомов и молекул вещества среды, где они движутся.
Дисперсией света объясняется такое природное явление, как радуга.
Виды волн, какие бывают
Продольные волны
Продольные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.
Они возникают при сопротивлении среды изменению ее объема, их причина — деформация сжатия/растяжения (в твердой среде) или уплотнения/разрежения (в газах и жидкостях).
Продольная волна заставляет частицы среды колебаться у своих положений равновесия, и этот процесс перемещается параллельно направлению распространения волны. Частицы сдвигаются строго по одной линии.
Чтобы узнать длину волны, нужно измерить расстояние между ближайшими точками сжатия или растяжения. Продольные волны могут распространяться в любой среде: твердой, жидкой, газообразной. Во время этого процесса непрерывно изменяется давление в каждой точке среды.
Примечание
В твердых телах продольные волны распространяются быстрее, чем поперечные. Для сравнения: продольная волна движется в стали со скоростью около 5900 м/с, поперечная — примерно 3250 м/с.
Поперечные волны
Поперечные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.
Они возникают при сдвиге слоев среды относительно друг друга. В поперечной волне колебания элементов происходят в направлениях, перпендикулярных направлению распространения волны. Среда стремится вернуть деформированные частицы на место, при этом на несмещенные частицы рядом со смещенными воздействуют силы упругости и отклоняют их от положения равновесия. Жидкости и газы не сопротивляются изменению формы, поэтому поперечные волны возможны только в твердых средах.
Длина поперечной волны — расстояние между двумя ближайшими ее впадинами или горбами.
Примечание
И продольные, и поперечные волны относятся к упругим — возникающим только в упругой среде, обладающей свойством после деформации возвращаться к прежней форме.
Стоячие волны
Стоячие волны — волновые процессы в распределенных колебательных системах с устойчивым в пространстве расположением участков с максимальной и минимальной амплитудой.
Самую простую одномерную стоячую волну можно возбудить, запустив колебательный процесс с одного конца стержня или гибкой струны. Добравшись до конца стержня или струны, волна отразится, что вызовет наложение.
Бегущие волны
Бегущие волны — процессы последовательного изменения (с определенным запаздыванием) состояния взаимодействующих тел, когда они друг за другом приходят в движение.
Ее можно запустить, например, в системе из косточек домино, выстроенных строго друг за другом на ровной поверхности
Если осторожно толкнуть первую, она, падая, уронит вторую, та — следующую, и в результате такого последовательного падения по ряду побежит волна
2.2. Световые величины
Энергетические величины являются исчерпывающими с энергетической точки зрения, но они не позволяют количественно оценить визуальное восприятие излучения. Восприятие глазом определяется не только мощностью воспринимаемого излучения, но также зависит от его спектрального состава (так как глаз – селективный приемник излучения). Световые характеристики описывают, как энергию излучения воспринимает зрительная система глаза с учетом спектрального состава света.
2.2.1. Световые величины
Световые величины обозначаются аналогично энергетическим величинам, но без индекса.
|
У световых величин нет никакой спектральной плотности, так как глаз не может провести спектральный анализ.
Сила света:
Если в энергетических величинах исходная единица – это , то в световых величинах исходная единица – это сила света (так сложилось исторически). Сила света определяется аналогично :
| (2.2.1) |
– сила излучения эталона (эталонный излучатель или черное тело) при температуре затвердевания платины () площадью .
Абсолютно черное тело
Рис.2.2.1. Абсолютно черное тело.
Поток излучения:
, (2.2.2)
– это поток, который излучается источником с силой света в телесном угле :.
Освещенность:
, (2.2.3)
– освещенность такой поверхности, на каждый квадратный метр которой равномерно падает поток в .
Светимость:
За единицу светимости принимают светимость такой поверхности, которая излучает с световой поток, равный .
Яркость:
За единицу яркости принята яркость такой плоской поверхности, которая в перпендикулярном направлении излучает силу света с .
2.2.2. Связь световых и энергетических величин
Связь световых и энергетических величин связь устанавливается через зрительное восприятие, которое хорошо изучено экспериментально.Функция видности – это относительная спектральная кривая эффективности . Она показывает, как глаз воспринимает излучение различного спектрального состава. – величина, обратно пропорциональная монохроматическим мощностям, дающим одинаковое зрительное ощущение, причем воздействие потока излучения с длиной волны условно принимается за единицу. Функция видности глаза максимальна в области желто-зеленого цвета (550–570 нм) и спадает до нуля для красных и фиолетовых лучей (рис.2.2.2).
2.2.2. Функция видности глаза.
Определить некую световую величину (поток, сила света, яркость, и т.д.), по спектральной плотности соответствующей ей энергетической величины можно по общей формуле:
(2.2.4) |
где – функция видности глаза, 680 – экспериментально установленный коэффициент (поток излучения мощностью с длиной волны соответствует светового потока).
Например, сила света: (2.2.5)яркость: (2.2.6)
Другие единицы измерения световых величин:
сила света | ||
яркость | ||
освещенность |
Сопоставление энергетических и световых единиц:
Энергетические | Световые | ||
Наименование и обозначение | Единицы измерения | Наименование и обозначение | Единицы измерения |
поток излучения | световой поток | ||
энергетическая сила света | сила света | ||
энергетическая освещенность | освещенность | ||
энергетическая светимость | светимость | ||
энергетическая яркость | яркость |
Световая экспозиция
Световая экспозиция – это величина энергии, приходящейся на единицу площади за некоторое время (, накопленная за время от до ):
| (2.2.7) |
Если освещенность постоянна, то экспозиция определяется выражением:
(2.2.8)
Блеск
Для протяженного источника характеристика, воспринимаемая глазом – . Для характеристика, воспринимаемая глазом – блеск (чем больше блеск, тем больше кажется яркость). Блеск – это величина, применяемая при визуальном наблюдении точечного источника света.
Блеск – это освещенность, создаваемая точечным источником в плоскости зрачка наблюдателя, .
Видимый блеск небесных тел оценивается в звездных величинах . Шкала звездных величин устанавливается следующим экспериментальным соотношением:
(2.2.9)
Чем меньше звездная величина, тем больше блеск. Например: – блеск, создаваемый звездой первой величины, – блеск, создаваемый звездой второй величины.
Яркость некоторых источников, : – поверхность солнца, – поверхность луны, – ясное небо, – нить лампы накаливания, – ясное безлунное ночное небо, – наименьшая различимая глазом яркость.
Освещенность, : – освещенность, создаваемая солнцем на поверхности Земли (летом, днем, при безоблачном небе),– освещенность рабочего места, – освещенность от полной луны, – порог блеска (примерно 8-ая звездная величина).
Решение задач на определение световых величин рассматривается в практическом занятии “Энергетика световых волн”, пункт “1.2. Расчет световых величин”.
Схема проекта
Схема измерителя солнечной радиации на основе платы Arduino представлена на следующем рисунке.
Как видим, схема очень проста. Датчик BH1750 подключается к плате Arduino Nano по интерфейсу I2C. При этом датчик BH1750 имеет внутренние подтягивающие резисторы для интерфейса I2C, поэтому отпадает необходимость в использовании внешних подтягивающих резисторов. Подавая на плату Arduino питание 5V мы на ее выводе 3.3V получаем стабилизированное с помощью ее внутреннего регулятора напряжение 3.3V, которое используется для питания датчика BH1750. Контакт ADDR датчика замыкается на землю, что приводит к тому, что адрес по умолчанию датчика BH1750 становится его адресом I2C.
Как измерить яркость освещения
Измерить яркость можно с помощью специализированного прибора. В качественном яркометре устанавливают:
- объектив с высокой светосилой;
- чувствительную матрицу;
- микропроцессорный блок обработки/ вывода информации.
Если хорошо настроить такой прибор, он сможет измерять силу света на большом расстоянии от источника (отражающей поверхности).
Люксометр
Приборы этой категории создают со встроенным или выносным датчиком. Простейшие стрелочные приборы стоят недорого. Однако пользоваться ими неудобно в труднодоступных местах и при высоком уровне вибраций. Повышенную точность обеспечивают цифровые модели. Фоточувствительный датчик устанавливают на поверхности. После обработки результат измерений отображается на дисплее и записывается в памяти.
Измерение люксометром
Отличие от мощности светового потока
Для дальнейшего понимания нюансов необходимо понять разницу между силой света и световым потоком. Это легче всего сделать по аналогии с такими физическими величинами, как сила и давление.
Например, если вы приложите определенную силу к площади в 1 квадратный сантиметр, давление будет распределено равномерно по всей поверхности. Но если взять иглу и приложить к ней ту же силу, то давление будет сосредоточено в крошечной области под кончиком и будет в сотни раз больше. И сила останется прежней.
Чем больше световой поток ограничен в своем распространении, тем выше коэффициент интенсивности. Когда речь идет об использовании этого фактора при выборе лампочки для комнаты, следует помнить несколько простых советов:
- Лучше использовать точечные светильники или трековые модели, которые можно направить в нужное место, чтобы осветить определенную часть комнаты. Этот вариант гораздо удобнее, чем люстра, поскольку концентрирует свет в одном месте, а не рассеивает его по комнате.
- Интенсивность света во многом зависит от плафонов, установленных на светильнике. Варианты из матового стекла и подобных материалов дают ровный, рассеянный фон. Тканевые конструкции и другие непрозрачные решения ограничивают распространение света и распределяют его на ограниченной площади.
- В светильниках с отражателем освещенность гораздо выше, что позволяет устанавливать лампы меньшего размера.
Выбор светильников должен основываться на качестве света, который они обеспечивают
В разных помещениях предъявляются разные требования, поэтому важно учитывать особенности каждой комнаты и выбирать варианты, обеспечивающие комфортное освещение. Важно помнить, что интенсивность света зависит от угла, под которым он распространяется, поэтому прожекторы и точечные светильники могут быть умножающими элементами
Один люмен равен световому потоку, излучаемому изотропным точечным источником со световым потоком в одну канделу при телесном угле в один стерадиан (1 лм = 1 кдкп).