Пробник для проверки фазного напряжения
Электриками часто используется индикаторная отвёртка. Это небольшая отвертка, довольно «слабая» на вид, неспособная затянуть винты с большим моментом. Но у нее другое назначение. Это индикатор фазы сети. Фазные провода сети находятся под повышенным напряжением относительно земли и нулевого провода, смертельно опасным для человека.
Отвертка индикаторная — это простой и надежный тестер напряжения. Она не позволяет измерять напряжение, но безошибочно говорит о наличии напряжения, которое МОЖЕТ быть опасным. Наиболее распространен индикатор на основе неоновой лампочки. Это классика, конкурировать с которой очень сложно, и вот почему:
- Простота устройства,
- Высокая надежность,
- Высокая чувствительность,
- Дешевизна.
Стоит уделить ей подробное внимание в отдельном разделе и описать, как работает этот пробник
Индикатор напряжения сети газоразрядный
Принцип работы индикаторной отвертки состоит в особенно малом токе тлеющего разряда в неоновой лампочке, который поддается визуальному обнаружению. В то же время напряжение разряда очень удачно расположено в диапазоне от 70–80 вольт и выше.
Последовательно с лампочкой включается токоограничивающий резистор с номиналом 500–1000 килоом. Он защищает от чрезмерного тока лампочку и тело человека.
Особенность неонового индикатора в том, что человек является частью электрической цепи, к которой приложено высокое напряжение. Но поскольку тело человека имеет сопротивление порядка 1–4 килоом, то подавляющая часть напряжения падает на лампочке и соединенном с ней резисторе.
На самом человеке падают единицы вольт, что совершенно безопасно. Ни в коем случае нельзя использовать отвертку без сопротивления!
Индикаторной отверткой нельзя сделать почти ничего, кроме как определить фазу и ноль. Но это очень важная и обязательная задача, имеющая прямое отношение к электробезопасности. Как отвертка индикатор довольно слаб и такой отверткой нельзя затягивать винты с большим усилием.
Удерживая отвертку в руке, осторожно касаются токоведущих частей. При этом обязательно нужно касаться металлической кнопочки или ободка на изолирующей ручке отвертки, чтобы цепь замкнулась через тело на землю. Если лампочка внутри отвертки светится малиновым светом, то данный проводник — одна из фаз сети
Иначе это нейтраль, имеющая связь с землей, или заземление, или изолированный участок цепи (проводник)
Если лампочка внутри отвертки светится малиновым светом, то данный проводник — одна из фаз сети. Иначе это нейтраль, имеющая связь с землей, или заземление, или изолированный участок цепи (проводник).
Свечение может наблюдаться даже на тех проводниках, которые «не бьют током». Это сетевые наводки через емкостную связь
С ними также необходимо соблюдать осторожность. Если величина емкости достаточно велика, то такой проводник может быть опасным
Индикаторы-пробники для поиска фазы и ноля
Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.
На неоновой лампочке
Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.
Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.
Светодиодный индикатор-пробник
Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.
Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.
Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя
. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!
Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.
Как самому сделать индикатор-пробник для поиска фазы и ноля на неоновой лампочке
При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.
Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.
Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.
Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.
При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.
Алгоритм работы с простым индикатором напряжения
После того как мы рассмотрели строение самой простой сигнальной отвертки, нужно определить для нее правильный алгоритм работы. Поиск фазы в проводах, в данной ситуации, выглядит следующим образом:
жалом изделия необходимо последовательно прикоснуться ко всем обследуемым проводам;
Отвертка в рабочем режиме
- во время прикосновения к проводам необходимо касаться контактного поля. Оно специально выведено на пластиковый корпус;
- в момент прикосновения жала к фазе, индикатор на отвертке начинается светиться.
Как видим, с помощью такого инструмента найти фазу и ноль будет достаточно просто, а самое главное – безопасно.
Как сделать пробник-индикатор для электрика своими руками?
Пробник-индикатор можно собрать своими руками в домашних условиях. Для этого потребуется минимум времени и деталей, при этом возможности такого пробника весьма широкие. С его помощью можно легко и быстро проверить состояние электрической проводки, определить «ноль» и «фазу», оценить сопротивление изоляции электроприборов. Кроме того, можно произвести прозвонку электрической оцепи и проверить работоспособность таких радиоэлементов, как резисторы, конденсаторы, диоды и транзисторы. Схема прибора приведена на рис. 1
Рис. 1. Принципиальная схема пробника
Как видно, схема собрана из минимального количества элементов и представляет собой классический усилитель постоянного тока. Резисторы в базах транзисторов Т1 и Т2 ограничивают максимальные значения их базовых токов, а резистор R4 определяет верхний предел измеряемых сопротивлений. Конденсатор С1 служит для создания отрицательной обратной связи по токам переменных значений. Питается прибор от любого маломощного источника напряжения 3 вольта, например, от двух «пальчиковых» батареек или от одной «компьютерной» батарейки (такие стоят на материнских платах). При этом пробник не нуждается ни в каких выключателях питания, так как в режиме «покоя» практически не потребляет ток от элементов питания.
Щуп Х2 прибора делают в виде «иглы» и он жёстко закреплен в корпусе. В качестве него можно применить отрезок медного провода сечением 1,5…2,5 мм. Щуп Х1 — зажим типа «крокодил» на отрезке гибкого многожильного провода длиной около 20 см.
При соединении щупов Х1 и Х2 светодиод загорается. Он будет светиться также при измерении сопротивлений от нуля до 0,5 МОм, при этом от величины измеряемого сопротивления будет зависеть яркость его свечения. При измерении постоянного напряжения светодиод будет гореть, если «плюс» измеряемой цепи будет на щупе Х2. При поиске «фазы» переменной цепи следует держать щуп Х1 в руке, а щупом Х2 касаться токопроводящих проводников. При этом данный пробник не реагирует на так называемое «наведённое напряжение», а лишь конкретно на «фазу», в отличие от обычных, простых пробников на «неонке».
В схеме можно применить любые маломощные транзисторы структуры n-p-n, такие так широко распространённые КТ315, КТ3102 или аналогичные импортные. В качестве диода VD1 лучше будет работать маломощный кремниевый, например КД503 или аналогичный. Светодиод HL1 — типа АЛ307 или другой с рабочим напряжением (напряжением зажигания) порядка 2…2,6 вольт. Конденсатор — любой, подходящий по размерам. Резисторы можно применить мощностью 0,25 или 0,5 ватт.
Настройка прибора не представляет сложности.
Для этого следует временно удалить резистор R4 и включить между щупами сопротивление порядка 0,5 МОм. Светодиод должен загореться, а если этого не происходит, то нужно заменить транзисторы на другие, с большими значениями коэффициента усиления по току (h21э). Затем подбором сопротивления резистор R4 нужно добиться минимального свечения светодиода. Так можно настроить прибор и на любое другое значение максимально измеряемого сопротивления.
Диоды и транзисторы данным пробником проверяют как и тестером, измеряя прямое и обратное сопротивление их p-n переходов. Можно проверить и исправность конденсаторов начиная примерно от 0,01 мкФ и более — при подключении исправного конденсатора светодиод вспыхивает на некоторое время. По времени свечения или вспышки светодиода можно приблизительно судить о ёмкости проверяемого элемента. Если конденсатор пробит или у него большой ток утечки, то светодиод будет гореть постоянно. При оценке сопротивления изоляции действуют так же, как при измерении (проверке) сопротивления резисторов. При хорошем качестве изоляции не должно быть никакого свечения светодиода.
Приведённая здесь схема проста в сборке и настройке, имеет хорошую повторяемость и не один раз была опробована на практике. Элементов питания (двух «пальчиковых» батареек) хватает на несколько лет работы в режиме средней интенсивности пользования прибором.
Вот такой пробник-индикатор может получиться в итоге
Или такой….
Работа с сетью 220 В
Самый простой указатель напряжения электросети без источника питания делается из резистора, ограничителя тока (транзистора), выпрямителя (диода) и любого светодиода. Сопротивление резистора 100 – 150 кОм.
Характеристики диода:
- ток 10-100 мА;
- напряжение 1-1,1 В;
- обратное напряжение 30-75 В.
При 220 В частоте 3 Гц светодиод загорается. Корректировать частоту и повысить яркость можно изменением емкости конденсатора. Такой индикатор срабатывает при минимальном напряжении 4,5 В. Кроме тока сети он может определить исправность, включенное и выключенное состояние электроприбора.
Проверка постоянного напряжения
Для проверки сети на 12 вольт и целостности соединений можно сделать другой светодиодный индикатор (нужны 2 разноцветных светодиодных элемента). Для ограничения тока можно использовать резистор с сопротивлением 50-100 Ом или лампочку накаливания с небольшой мощностью. Один из светодиодов загорается при подключении напряжения соответствующей полярности.
В самодельный индикатор для сети 12 В можно добавить конденсатор, диод и 2 транзистора. Полевой транзистор стабилизирует ток. Конденсатор, защищающий диод от скачков напряжения, нужен с емкостью 0,1 мкФ, неполярный. Резистор с сопротивлением 1 Мом является нагрузкой биполярного транзистора. При проверке сети с постоянным напряжением диод проверяет полюса. Если ток переменный, этот элемент срезает минусовую половину. При подаче напряжения значение тока определяет биполярный транзистор и сопротивление резистора (500-600 Ом).
Такой прибор подходит для работы с переменной и постоянной сетью с напряжением 5-600 В.
Указания по эксплуатации указателя УВНУ-10СЗ ИП
Указатель высокого напряжения УВНУ — 10СЗ ИП и трубка фазировки состоят из 2-х основных частей: рабочей и изолирующей части с рукояткой. Соединение звеньев между собой осуществляется навинчиванием. Безопасность при работе с указателем и трубкой фазировки обеспечивается кольцеобразным упором на корпусе.
Перед применением следует:
Произвести наружный осмотр указателя и трубки фазировки, при котором следует обратить внимание на отсутствие трещин, отслоений и других дефектов. При наличии влаги и загрязнений удалить их салфеткой
В случае запотевания указателя в теплом помещении после хранения, либо эксплуатации на морозе, необходимо выдержать его в течение 15 минут в этом помещении и протереть салфеткой насухо
При наличии влаги и загрязнений удалить их салфеткой. В случае запотевания указателя в теплом помещении после хранения, либо эксплуатации на морозе, необходимо выдержать его в течение 15 минут в этом помещении и протереть салфеткой насухо.
Перед использованием указателя необходимо убедиться в его исправности
Для этого необходимо, прикасаясь одной рукой (без перчатки) к щупу (крюку), другой нажать на кнопку на торце рабочей части указателя. Прерывистое свечение и звучание указателя свидетельствуют о его исправности.
Если сопротивление кожи велико и самопроверка не срабатывает, необходимо увлажнить пальцы.
При низких температурах (ниже -25°С), в случае несрабатывания самопроверки, рекомендуется указатель проверить как индикатор напряжения на установке, заведомо находящейся под напряжением или при помощи специального устройства для проверки указателей напряжения (УПУН).
При использовании указателя в качестве индикатора напряжения от 100 до 1000 В необходимо, прикасаясь рукой к металлическим деталям хвоста рабочей части, подвести щуп (крюк) к токоведущему проводу. Появление прерывистых светозвуковых сигналов указывает, что токоведущая часть находится под напряжением.
Пофазное определение наличия напряжения осуществляется контактным способом.
Оператору необходимо совершить подъем на опору, либо определить наличие напряжения касанием токоведущей части с земли, если имеется оперативная изолирующая штанга ШО — 10 — 4 — 6,6, длиной 6,6м; при этом рабочая часть указателя закрепляется на резьбу оперативной головки штанги.
При касании щупом (крюком) указателя токоведущей части, находящейся под напряжением, одновременно появляются яркие красные вспышки с частым прерывистым мощным звуковым сигналом.
Для определения наличия наведенного напряжения на обесточенной и заземленной эл. установке, необходимо сначала проверить наличие напряжения указателем.
Убедившись в отсутствии напряжения, необходимо повторно проверить наличие наведенного напряжения ниже пороговых (1,5 кВ). Для этого необходимо отделить рабочую часть указателя от изолирующей, прикасаясь рукой (без перчатки) к металлическим деталям хвоста рабочей части, подвести щуп (крюк) к токоведущему проводу.
Наличие индикации и звукового сигнала свидетельствует о том, что токоведущая часть находится под наведенным напряжением.
При использовании указателя с трубкой фазировки необходимо соединить указатель с трубкой фазировки проводом, имеющимся в комплекте поставки, а штырь шунтирующего провода ввести в отверстие, проделанное с боковой стороны рабочей части указателя.
Во избежание порчи указатель не следует подвергать ударам и толчкам.
Детектор скрытых проводов, схема, принцип работы
Я решил просверлить отверстие в стене, но я не знаю точно, где находится электрическая система? Тогда вам нужно знать, где находятся провода, прежде чем начинать. Лучше знать, чем гадать.
Почему вам необходимо знать, как устроена электропроводка в вашем доме
При ремонте дома или квартиры часто возникает необходимость просверлить отверстие в стене. Например, для крепления планки из гипсокартона. Иногда приходится сверлить стены, чтобы проложить водопроводные трубы.
Но даже если вы просто хотите повесить шкаф или полку, перевесить картину или настенные часы, вам всегда придется сверлить отверстие в стене.
Важно не ударять трубы в стену, так как это может привести к серьезным повреждениям как самой трубы, так и инструмента, не говоря уже о вашем здоровье. Чтобы предотвратить это, необходимо знать схему электропроводки вашего дома
Зачем мне нужен детектор проводов?
Если у вас нет схемы электропроводки, детектор скрытых проводов поможет вам выяснить, как и где расположены провода, чтобы не наткнуться на них во время работы.
Это поможет вам определить, где именно в стене находятся провода. Детекторы, продающиеся в магазине, ни в коем случае нельзя назвать бюджетными.
Однако что делать, если вам нужно определить расположение электропроводки в квартире, а бюджет не позволяет приобрести дорогостоящий прибор?
В этом случае есть альтернатива – можно сделать простой детектор скрытой проводки своими руками. Его изготовление не требует много времени и усилий, и в то же время помогает сохранить бюджет, а также не повредить провода в стене.
Конструкция детектора
Конструкция детектора основана на принципиальной схеме, которая не отличается от конструкции любой другой электронной схемы. Прежде чем сделать детектор скрытой проводки своими руками, давайте разберемся в схеме этого устройства.
Большое количество диаграмм всех видов можно найти в Интернете. Схема, показанная ниже, проста, что, в свою очередь, делает ее более простой и экономичной в изготовлении.
Небольшое количество компонентов не всегда означает, что устройство не будет работать должным образом. Совсем наоборот, ведь всем известно, что чем проще механизм, тем он надежнее. В нашем случае отсутствие большого количества компонентов позволит избежать трудностей при производстве, а также последующей настройке устройства.
Необходимые компоненты
- Для сборки устройства нам понадобятся:
- Катушечная батарея с клеммной колодкой;
- Резистор 1 кОм;
- Двухконтактная кнопка;
- Светодиод любого цвета;
- 3 биполярных транзистора BC547 (или эквивалент);
- Медная проволока с малым сечением;
- макетная плата, электрический паяльник.
Как работает устройство для поиска скрытых проводов?
Как же работает устройство для поиска скрытых проводов? Принцип работы очень прост и будет понятен даже тем, кто не очень хорошо знаком с радиоэлектроникой. Все провода под напряжением окружены электромагнитным полем. Чем ближе провода, тем сильнее поле.
Когда антенна детектора скрытой проводки находится в этом поле, в антенне возникает очень слабый ток. Следовательно, чем ближе антенна к проводу, тем больше ток генерируется в антенне.
Эта антенна подключена к базе биполярного транзистора и фактически является источником управляющего тока. Чем больше управляющий ток – тем больший ток пропускает биполярный транзистор.
В свою очередь, ток от транзистора поступает на светодиод. Для обеспечения достаточного тока для управления светодиодом необходимо несколько транзисторов. Оказалось, что чем ближе провод под напряжением к антенне – тем ярче светится светодиод.
Ниже приводится видео, в котором наглядно показано, как сделать детектор скрытой проводки своими руками
Мы хотели бы обратить внимание на несколько моментов, которые не стоит повторять автору видео
Лучше подключить батарею к плате через диэлектрик, и только потом выполнять все работы по пайке. Для соединения удаленных компонентов лучше использовать перемычки, а не припой. Также не забудьте обезжирить все контакты перед пайкой – это будет безопаснее и долговечнее.
Управляйте устройством следующим образом. Подключите устройство к мультиметру и, перемещая движок переменного резистора R2 от левой клеммы на схеме, добейтесь звукового сигнала. В то же время само устройство должно быть перемещено как можно дальше от проводки
Затем осторожно поверните регулятор в противоположном направлении, пока не исчезнет звук. Теперь устройство максимально отзывчиво и готово к работе
Индикатор переменного напряжения 220 В
Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:
- светодиод;
- резистор;
- диод.
Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.
Принципиальная схема
Если же единственное место возможного питания – электросеть, то можно мигающий светодиод подключить по очень хорошо зарекомендовавшей себя схеме, показанной на рисунке. На резисторах R1-R3 падает избыточное напряжение. Резисторов три по 75 кОм, а не один на 220 кОм потому что желательно сделать линию длиннее, чтобы гарантировано избежать пробоя. Диод VD1 служит выпрямителем. Конденсатор С1 – накопительный. Теперь самое интересное, – в схеме есть стабилитрон VD1. В принципе, если бы светодиод HL1 был бы не мигающем надобности в этом стабилитроне не было бы, как и в резисторе R4.
Но НИ – мигающий светодиод. Потому в те моменты времени когда он гаснет его сопротивление сильно возрастает и, соответственно, возрастает и падающее на нем напряжение. Если не будет стабилитрона VD1 прямое напряжение на НИ в момент его гашения достигнет 300V и может быть даже больше. Что приведет к выходу его из строя. Здесь же есть стабилитрон, который ограничит напряжение на светодиоде в те моменты, когда он будет погашен.
Напряжение стабилизации стабилитрона совсем не обязательно должно быть12V. Стабилитрон может быть на любое напряжение, которое нормально выдерживает светодиод в погашенном состоянии. Но не ниже его прямого напряжения в горящем состоянии. То есть, где-то от ЗV до 30V. Практически любой стабилитрон на любое напряжение в этих пределах. Соответственно, конденсатор С1 должен быть на напряжение не ниже напряжения стабилитрона.
Резистор R4 нужен для того, чтобы ограничить ток разрядки конденсатора через светодиод в момент его зажигания. В принципе, можно обойтись и без него, но велика вероятность что светодиод долго не прослужит. Так что R4 здесь на всякий случай. Особенно актуален R4 при использовании стабилитрона на напряжение у верхнего предела (до 30V). Потому что чем выше это напряжение, тем будет больше бросок тока в момент зажигания светодиода.
Будет интересно Как проверить трансформатор при помощи мультиметра
Как собрать светодиодный индикатор уровня на LM3915 своими руками
Конструкция микросхемы LM3915 представляет заключенных в корпусе десяти однотипных операционных усилителей компараторов. Прямые входы усилителей подключены через линейку резистивных делителей подобранных так, что светодиоды в нагрузке усилителей включаются по логарифмической зависимости. На обратные входы усилителей поступает входной сигнал , который формируется буферным усилителем (вывод 5). Конструкция микросхемы включает также интегральный стабилизатор (выводы 3, 7, 8), а также ключ задания режима работы индикатора (вывод 9). Микросхема имеет широкий диапазон напряжения питания от 3 до 25 Вольт. Величина опорного напряжения задается в пределах от 1,2 до 12 Вольт внешними резисторами. Шкала индикатора соответствует уровню сигнала 30 дБ с шагом в 3 дБ. Выходной ток устанавливается в пределах от 1 до 30 мА.
Конструкция микросхемы LM3915
Набор деталей «Индикатор уровня звука на LM3915»
Детали набора «Индикатор уровня звука на LM3915»
Плата индикатора уровня звука на LM3915
Плата индикатора уровня звука на LM3915
Схема индикатора звука на LM3915 представлена на фото.
Схема индикатора звука на LM3915
Принцип действия. Напряжение питания 12 Вольт подается на третий вывод LM3915. Оно же, через ограничивающий резистор R2 поступает на светодиоды. Сопротивления R1 и R8 выравнивают яркость свечения красных светодиодов в шкале. Также напряжение 12 Вольт подается на перемычку управления режимом работы индикатора (вывод 9). В замкнутом состоянии перемычки схема обеспечивает свечение только одного светодиода, соответствующего уровня сигнала. При разомкнутой перемычке схема работает в эффектом режиме «столбик», уровень входного сигнала пропорционален высоте светящегося столбца или длине строки. Делитель собранный на R3, R4 и R7 ограничивает уровень входного сигнала. Точная настройка делителя осуществляется многооборотным подстроечным сопротивлением R4. Делитель R9 R6 задает смещение для верхнего уровня логарифмической линейки сопротивлений микросхемы (вывод 6). Нижний уровень логарифмической линейки сопротивлений (вывод 4) присоединяется к общему проводу. Резистор R5 (вывод 7) увеличивает величину опорного напряжения и влияет на яркость светодиодов. R5 задаёт ток через светодиоды и рассчитывается по формуле: R5=12,5/Iled, где Iled – ток одного светодиода, А. Индикатор уровня звука работает следующим образом. В момент, когда входной сигнал преодолеет порог нижнего уровня плюс сопротивление на прямом входе первого компаратора, засветится первый светодиод (вывод 1). Дальнейшее нарастание звукового сигнала приведёт к поочерёдному срабатыванию компараторов, о чём даст знать соответствующий светодиод. По инструкции во избежание повреждения микросхемы, не следует превышать ограничение в 20 мА тока подаваемого на светодиоды.
Принцип работы индикаторной отвертки
Вне зависимости от вида прибора, основная идея его заключается в подаче сигнала о наличии напряжения в сети. При этом контактные модели определяют напряжение посредством касания к оголенному проводнику (жиле кабеля, контактным поверхностям приборов, проводящей ток жидкости и так далее), а бесконтактные «считывают» электромагнитное поле участка.
Однако в любом случае электрическую цепь в обычной индикаторной отвертке требуется замкнуть для получения информации – а именно, прижать пальцем контактную пластину на конце изделия. Человек – тоже проводник электроэнергии, на этом и основан принцип работы прибора.
Все изделия делят на группы не только по особенностям конструкции, но и по чувствительности. Самыми точными заслуженно считаются качественные электронные модели, самими малочувствительными – изделия с неоновой лампой. Последний тип инструмента воспринимает напряжение от 60 В.
Заключение
В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.
Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.