Типы, особенности и схема ИК подсветки

Эксперимент

На фото 1 приведен счетверенный стоп-кадр, полученный телекамерой цветного изображения (color), камерой “день/ночь” без ИК-чувствительности (dn), камерой с постоянной ИК-чувствительностью (dn ir) и камерой с подвижным управляемым ИК-фильтром (dn cut). Освещение в измерительной камере производится лампами накаливания. Отчетливо заметны искажения цвета в камере с постоянной ИК-чувствительностью. Примечательно, что особенно подвержены изменению цвета синтетические материалы.

На фото 2 приведен стоп-кадр, полученный аналогичными камерами при минимальной освещенности. Все три камеры “день/ночь” перешли в черно-белый режим. Однако видно, что контрастность и яркость изображений цветной камеры и камеры “день/ночь” без ИК-чувствительности практически идентичны и явно уступают камерам с расширенным в область ИК спектральным диапазоном чувствительности.

Естественно, только камеры “день/ночь” с ИК-чувствительностью могут работать с ИК-подсветкой. Однако реальная чувствительность в области ИК, а уже тем более на конкретной длине волны ИК-осветителя, остается для потребителя “тайной за семью печатями”. Отчасти и поэтому тоже такой популярностью пользуются телекамеры цветного изображения “день/ночь” со встроенной ИК-подсветкой. В таком случае производитель сообщает (если, конечно, это правда), на какой дальности можно вести наблюдение.

Если же вы применяете отдельный ИК-осветитель с телекамерой цветного изображения “день/ночь”, вам не избежать “проб”, а может быть “и ошибок”. Причем, как правило, несколько мифические данные о ночной чувствительности в люксах здесь не помогут, поскольку ИК-излучение в люксах не нормируется. Для иллюстрации этой ситуации на фото 3 приведен стоп-кадр упомянутых выше камер при предельно малой освещенности от ламп накаливания.

Очевидно, что камера с постоянной ИК-чувствительностью имеет существенно меньшую интегральную чувствительность в сравнении с камерой ICR (cut). С другой стороны, при освещении ИК-осветителем с длиной 930 нм изображения этих камер практически идентичны, что представлено на фото 4. К сожалению, нам никогда не известны даже относительные спектральные характеристики чувствительности камер “день/ночь”. И в данном случае информация производителей сенсоров нам помочь не в состоянии, поскольку весьма редко распространяется на ИК-диапазон в сравнении с черно-белыми сенсорами.

На рис. 1 (см. стр. 72) приведена спектральная характеристика чувствительности одной из самых популярных сейчас CCD-матриц – SONY Super HAD II, которая, как мы видим, нормируется только в видимом диапазоне.

Естественно, ее можно интерполировать в область ИК, учитывая ход аналогичных характеристик черно-белых сенсоров. Но мы же не знаем, какие фильтры использует производитель. Ведь даже камеры с ICR имеют порой серьезную чувствительность в области ИК. Очевидно этот “тренд” обусловлен стремлением вытянуть большую чувствительность в цветном (дневном) режиме.

Типовые модели и основные производители

Практически все производители видеокамер для наблюдения выпускают ИК-прожекторы для своих устройств, однако все они взаимозаменяемы – можно использовать камеру и прожектор от разных производителей. Тем не менее, следует различать основные типовые модели, которые включают в себя прожекторы ближнего, среднего и дальнего действия.

Следует тщательно анализировать рельеф местности и особенности зона, которую покрывает видеокамера – в зависимости от этих параметров выбирать нужный тип модели. Прожектор ближнего действия отличается малой дальностью освещения (до 10 метров) и относительно широким углом обзора. Наиболее популярная сфера их применения: офисные здания, отделения банков и прочие административные помещения, где необходимо вести ночное видеонаблюдение без использование обычного освещения.

Прожектор средней мощности пользуется популярностью при видеонаблюдении за складскими и открытыми местностями. Такое устройство имеет широкий угол обзора (до 120 градусов), а максимальная дальность составляет 65-80 метров. Использование таких моделей позволяет экономить на монтаже и обслуживании системы.

Дальнобойный прожектор отличается «формой» инфракрасного светового пучка – он имеет вид узконаправленной пирамиды. Максимальная дальность составляет 150-300 метров. Чаще всего такие инфракрасные прожекторы встречаются на дорогах для видеофиксации нарушений, а в повседневной сфере крайне непросто найти сферу их применения.

Если Вас заинтересовали инфракрасные прожекторы, то рекомендуется обратить внимание на продукцию следующих производителей:

  • AXIS;
  • Acumen;
  • BOSCH;
  • ИК-Технологии.

Модели данных производителей отличаются доступной ценой и отличными эксплуатационными характеристиками. Процесс их монтажа крайне прост, а все необходимые работы можно выполнить самостоятельно, без привлечения сторонних специалистов.

Область применения

Применение камер видеонаблюдения с ИК подсветкой зависит от дистанции эффективного освещения зоны контроля. Все ИК источники делят на 3 группы:

  • Ближние — 1,5−10м;
  • Средние — 25−60м;
  • Дальние — 80−350 м

Ближнюю ИК подсветку целесообразно применять в следующих случаях:

  • Вызывные панели видеодомофонов;
  • Дополнительное освещение электронных видеоглазков;
  • Полнофункциональная подсветка для скрытых систем видеонаблюдения;
  • В качестве дежурного «темного освещения» в системах круглосуточного видеонаблюдения.

Средние и дальние прожекторы рекомендуется использовать:

  • Основной источник освещения для уличных камер видеонаблюдения, контролирующих территорию вокруг жилых домов;
  • Подсветка для видеокамер системы безопасности кинотеатров, ночных клубов и других заведений с подобной спецификой освещения;
  • Подсветка для контроля регистрационных номеров на трассах.

Основные характеристики

Длина ИК лучей. Люди видят свет в диапазоне 40-700 нм (нанометров). Большинство моделей ИК прожекторов генерирует излучение длиной:

  • 730-750 нм;
  • 800нм;
  • 870-880нм;
  • 930-950нм.

При этом если излучают ИК светодиоды до 880 нм, то видны красные точки работающих ИК диодов. Это может насторожить злоумышленника и раскрыть местонахождение камеры в затемненном помещении. Прожекторы в диапазоне 930-850 нм не видны абсолютно. Но они менее эффективны и имеют меньшую дальность обнаружения при сопоставимой мощности.

Таким образом, для обнаружения нарушителя на среднем расстоянии наиболее подходящий диапазон ИК излучения составляет 870-880 нм. Модели ИК прожекторов с таким рабочим диапазоном самые популярные и универсальные по своему воздействию. На дальних дистанциях лучше воспользоваться устройствами с диапазоном 790-820 нм. Источники ИК освещения, функционирующие на волне 940-950 нм. будут более эффективны на коротких дистанциях. 

Дальность эффективного освещения. Комбинированный параметр, находящийся в прямой зависимости от чувствительности видеокамеры и мощности источника ИК лучей. Данный показатель зависит от количества ИК светодиодов и силы тока, которая приходится на каждый из них. Но увеличение расстояния путем прямого наращивания параметров происходит до критического предела — «области насыщения», после этого увеличение интенсивности ИК излучения становится нецелесообразным.

Угол излучения. Как показывает практика устройство ИК подсветки наиболее эффективно при условии, если его угол излучения, совпадает с углом обзора камеры. в противном случае будет получено изображение светлое посредине кадра и темное по краям.

Сила потока излучения — выражается в Ватт на стерадиан:

Таблица сравнения основных эксплуатационных характеристик источников излучения разных типов, используемых в системе видеонаблюдения

Вебкамера – основа для видения в инфракрасном свете

Для того, чтобы сделать устройство для ночного видения нужна обычная вебкамера, которую требуется немного доработать, удалив из нее инфракрасную линзу. В результате камера начнет пропускать инфракрасное излучение. Для подсветки используем инфракрасный фонарик. В видео автор ролика упоминает мощность фонарика, но в комментарии он сообщает о своей ошибке, когда он называет его мощность. На самом деле мощность его 3 ватта. Инфракрасный фильтр прозрачный, он стоит на линзе камеры. После сборки вебкамеры без фильтра можно смотреть ночные виды, но только с использованием такого фонаря.

Далее смотрите, как работает эта камера, которая сделана своими руками, с подсветкой с помощью телевизионного пульта. С пультом инфракрасное освещение работает только на близком расстоянии, но например, для лестничной площадки его будет достаточно.

Инфракрасные фонари бывают необходимыми во многих ситуациях, они используются в неосвещенных помещениях, в охранной деятельности, при охоте, а также в других не менее важных сферах гражданского использования. Одной из самых популярных и востребованных марок ИК фонарей является Pulsar. Большой ассортимент инфракрасных фонарей для охоты вы сможете найти на странице https://opticstore.com.ua/catalog/infrakrasnye-fonari .

Выбор инфракрасного прожектора

При выборе инфракрасного прожектора следует обратить внимание на его технические характеристики. Их немного:

Их немного:

  • Длина излучаемой волны
  • Длина зоны обнаружения
  • Угол освещения
  • Энергопотребление

Длина волны может быть указана в технической документации на прожектор, но при выборе устройства она большой роли не играет. Длина зоны определяется условиями эксплуатации видеонаблюдения. Для того чтобы у камеры наблюдения не было «мёртвых» зон, угол освещения ИК прожектора должен быть больше угла обзора видеокамеры. Инфракрасные светодиоды достаточно экономичные приборы и их потребляемый ток редко превышает 1 А. В комплекте с прожектором поставляются крепёжные устройства для его правильной установки.

Когда стоит использовать ИК подсветку

ИК-подсвета чаще всего применяется в следующих случаях видеосъемки:

  1. Формирование благоприятных условий для освещения. Стандартные светильники не справляются с задачей равномерности распространения светового потока на всей наблюдаемой площади. ИК-прибор вкупе с ним позволяет подсветить тени, выровнять экспозицию и детализировать кадры.
  2. Создание скрытой системы подсветки. Многие системы безопасности проявляют эффективность, когда действуют незаметно для злоумышленника. Объект в полной темноте на самом деле может хорошо освещаться в инфракрасном диапазоне излучения и все события на нем детально фиксироваться на камеру.
  3. Улучшение функций видеоаналитики. ИК подсветка дает возможность максимально точно считывать и обрабатывать информацию системам слежения даже в полной темноте.
  4. Повышение пропускной способности передачи данных. Инфракрасное освещение позволяет улучшить качество изображения ночью и поспособствовать уменьшению объема записанных данных, и повысить скорость их обработки и передачи.
  5. Улучшение изображения мегапиксельных камер.

При выборе видеокамеры для совокупной работы с ИК-подсветкой предпочтение нужно отдавать моделям, чувствительным к излучению в этом диапазоне. Хорошим примером является камера SONYExView HAD с ПЗС-матрицей.

Основные характеристики

Рассмотрим технические характеристики ИК-подсветки:

  • длина волны (λ),
  • тип излучателя,
  • рефлектор (отражатель),
  • выходная мощность,
  • угол излучения,
  • рабочая дальность,
  • режимы,
  • питание,
  • время работы,
  • рабочая температура,
  • крепление,
  • габариты,
  • материал,
  • цвет,
  • вес.

На рис. 4 показаны основные детали камеры видеонаблюдения с внутренней инфракрасной подсветкой.

Рис. 4. Видеокамера для видеонаблюдения с ИК-подсветкой 

Для надёжной работы задан начальный диапазон частоты инфракрасного спектра, то есть после частоты красного цвета. Чёткой границы нет. Выбрано 4 диапазона:

  • 730–750 нм,
  • 830–850 нм,
  • 870–880 нм,
  • 930–950 нм.

В качестве источника излучения применяются ИК-светодиоды и лазерные инфракрасные диоды. Светодиоды излучают спектр частот, то есть создают мягкое излучение, а лазерные дают более жёсткое излучение. Выпускаются лазерные излучатели с внутренней оптической системой. Такие излучатели формируют узкий луч.

Рефлектор предназначен для образования светового пучка. Геометрический размер его представляет собой равнобедренный треугольник с вершиной у источника света. Угол раскрыва определяется на уровне 0,5 по оси. Средний угол раскрыва составляет 40–80 градусов (угловых)

Важно понимать, что с увеличением угла расхождения лучей расстояние подсветки уменьшается, а мощность прожектора в основном определяет не дальность, а площадь освещения. На рис. 5 показаны внешние подсветки разного вида

В дорогих моделях есть подстройка светового пятна. Рефлектор может быть как металлическим, так и пластмассовым и соответствовать требуемой жаропрочности. Инфракрасные диоды при работе нагреваются. Чем больше их мощность, тем больше нагрев. Поверхность рефлектора бывает текстурированная или гладкая. Спереди от рефлектора находится линза, которая защищает рефлектор и инфракрасный диод от окружающей среды. Изготавливается из стекла или пластмассы.

Мощность излучателей используется от милливатт до десятков ватт.

В пункте «режим» указаны возможные варианты работы. Например, в подсветке типа «хамелеон» возможны варианты:

  • строб;
  • маячок;
  • SOS;
  • регулировка излучения: высокое, среднее, низкое, минимальное;
  • дистанционное управление.

Для крепления ИК-фонарика к приборам ночного видения используют разнообразные типы приспособлений. Самые распространённые из них — рельсовые планки Weaver и Picatinny, переходники для штативного гнезда с резьбой ¼, стринги для шлема или головы, универсальное крепление под стрелковое оружие. Разница между планками будет в ширине прорези. У планки Вивера = 0,180″, а у Пикатинни = 0,206″, а между центрами – 0,394″ и глубина — 0,118″.

К корпусу предъявляются жёсткие требования. Он должен быть лёгким, ударопрочным, водонепроницаемым. Выдерживать отдачу ружья. В основном выполняется из анодированного высококачественного алюминиевого сплава, так как он работает в жёстких погодных условиях.

Преимущества и недостатки

К достоинствам можно отнести:

  • ИК-излучение безопасно для человека и окружающей среды.
  • Обеспечивает незаметное освещение охраняемого объекта.
  • Использование внешней подсветки улучшает качество изображения. Её можно располагать в любом удобном месте. Решает проблемы встроенной подсветки. Можно подбирать правильный угол освещения, выбирать прибор по мощности, дальности действия и площади покрытия.

К недостаткам относится изображение, которое получается чёрно-белым на цветной камере. Гладкие объекты (поверхность озёр или рек, стеклянные окна, кафель или глянцевая краска, снег, яркость заднего плана) отражают ИК-лучи и создают засвеченные пятна на изображении. Затрудняют видеоизображение также пыль, дождь, туман, летающие насекомые.

Основные преимущества

Светодиодные инфракрасные прожекторы имеют ряд преимуществ перед более простыми и устаревшими аналогами на лампах:

  • Экономичность;
  • Надежность;
  • Долговечность;
  • Экологичность;
  • Безопасность.

Инфракрасные прожекторы на светодиодах потребляют гораздо меньше энергии по сравнению с устаревшими ИК лампами. При этом срок эксплуатации данных приборов рассчитан до 100 000 часов, благодаря чему потребность в замене данных приборов возникает только через 5-30 лет в зависимости от условий эксплуатации и времени их работы в сутки.

Светодиоды сами по себе достаточно неприхотливы к внешнему воздействию, и вдобавок к этому в большинстве случаев помещаются в специальные защитные корпуса, так что о надежности этих приборов беспокоиться будет излишне.

Если старые ИК лампы, использующиеся в устаревших аналогах, могли нанести вред здоровью человека, то излучение светодиодов совершенно безвредно. Кроме того, рабочая температура светодиодов не превышает 80 °C, что обеспечивает хорошую пожаробезопасность инфракрасных прожекторов на светодиодах.

Недостатки и преимущества

Как и любое технологическое устройство, ИК-прожектор имеет свои плюсы и минусы в применении. Вот что необходимо знать о преимуществах данного устройства:

  • незначительное энергопотребление;
  • высокая износостойкость;
  • безопасность;
  • оптимальный уровень дальности действия.

Инфракрасное освещение также имеет и свои недостатки. Затрагивая этот вопрос, стоит сказать о том, что данный тип освещения несовместим с цветными камерами видеонаблюдения. Также работа уличной камеры непосредственно зависит от погодных условий и зачастую требует регулярной чистки стекла от различных загрязнений, вызванных внешними факторами окружающей среды.

Стоит также подчеркнуть, что в темноте камера может быть заметна из-за того, что светодиоды имеют красный оттенок в ночное время суток. Производители инфракрасных прожекторов не раз указывали на то, что в процессе работы камер прожекторы могут нагреваться, данный показатель является вполне нормальным. Перед использованием владельцу рекомендуется настроить яркость и установить необходимый контраст.

Подключение и монтаж

Как они подключаются? Давайте рассмотрим на примере уже почти готовой подсветки. Допустим, у вас есть алюминиевый профиль, с проложенной Led лентой внутри.

Для начала
отщелкиваете заглушку и рассеиватель.

Чтобы добраться до проводов, срезаете термоусадку. Готовые комплекты Led подсветки, как раз таки идут уже с припаянными проводами и выведенным коннектором.

Так как
модуль выключателя занимает определенное место, один сегмент ленты придется
отрезать.

Далее переходим к паяльным работам.

Выбираете паяльник малой мощности (до 40Вт) и выпаиваете провода.

Теперь нужно правильно расположить модуль. Какие провода, куда должны подключаться?

На задней стороне ищите соответствующие подсказки и надписи. Например:

GND (-) и VCC (+) – это основное питание с блока

Led (-) и led (+) – выход на нагрузку

Если никаких
надписей нет или они стерлись, то ориентируйтесь следующим образом. На дальние
контакты от кнопки подается питание 12-24В, а ближние идут на саму ленту.

При таком расположении модуля (фото вверху), нижние контакты будут минусовыми, а верхние – плюсовыми.

Сначала припаиваете провода от блока питания.

После этого обязательно изолируйте соединения термоусадкой, чтобы исключить случайное замыкание внутри алюминиевого профиля на его корпус.

Далее жилками сечением 0,5-0,75мм2 соединяете лед ленту. Только не перепутайте плюс с минусом.

Зачастую
приходится делать подключение крест-накрест, дабы соблюсти полярность.

Эти провода также в обязательном порядке изолируются. Сам модуль выключателя приклеивается к поверхности короба на двухсторонний скотч.

Можно ли самому подобрать и заменить в пульте от телевизора

В некоторых случаях возникает необходимость замены излучающего диода в пульте управления бытовой техникой:

  • взамен вышедшего из строя;
  • при желании установить излучатель большой мощности для увеличения дальности действия пульта.

Оба варианта подразумевают проблему – тип (и, соответственно, характеристики) родного излучателя в большинстве случаев неизвестен. В первом случае надо подобрать элемент, идентичный по параметрам. Во втором – с лучшими характеристиками, но так, чтобы не перегрузить выходной ключ пульта.

Для проверки, есть ли у управляющего транзистора запас по току, нужно скачать на него даташит.

Другая проблема – более мощный светодиод может не дать увеличения дальности, если длина излучаемой им волны не совпадет с участком чувствительности приемного элемента. Сигнал будет более интенсивным, но фотодиод не сможет эффективно преобразовать его. И даже если все совпадет, но телесный угол излучения будет более узким, придется более точно «прицеливаться» пультом в сторону управляемой аппаратуры, что снижает комфортность работы. Еще надо иметь в виду, что более мощный LED потребляет больше электроэнергии, и батареи в пульте придется менять чаще. Если все эти проблемы пользователя не пугают, и нужный светодиод приобретен (или демонтирован с устройства-донора), можно приступать к замене.

Сначала надо добраться до платы пульта. Для этого надо вывинтить саморезы, скрепляющие корпус, и отжать защелки.


Плата с установленным IR LED

Плату надо осмотреть и убедиться, что новый излучатель подходит по габаритам и расстоянию между выводами. Если все в порядке, старый светодиод надо отпаять или просто откусить с помощью кусачек, если он неисправен.


Демонтаж «родного» LED

Чтобы не ошибиться с полярностью, надо осмотреть плату – возможно, на ней есть маркировка анода и катода ИК-диода. Если нет – надо определить полярность самостоятельно. Это можно сделать прозвонкой элемента мультиметром или визуально. Больший по площади вывод, похожий на флаг – это катод (минус), второй вывод – анод (плюс). Полярность надо нанести на плату, чтобы не ошибиться.


Определение полярности LED визуальным методом

Новый светодиод припаивается на штатное место. Пульт собирается в обратном порядке. Далее надо убедиться в работоспособности нового излучателя – сделать это можно, нажав любую кнопку и посмотрев на IR RED через камеру телефона. Должны быть видны вспышки. Потом можно опробовать работу пульта в штатном режиме и убедиться в том, что дальность работы увеличилась (или, хотя бы, не уменьшилась).

Инфракрасные светодиоды находятся вокруг людей в быту и промышленности так же, как и обычные светоизлучающие. От того, что их работа не заметна невооруженному глазу, их роль не становится менее значимой.

Адаптируемая («умная», «smart IR») ИК-подсветка

Изменение фокусного расстояния приводит к подстройке угла и яркости smart IR-подсветки

Недостатки стандартной ИК-подсветки:

  • засветка объектива (особенно, если он загрязнен) за счёт отражения ИК лучей светодиодов от атмосферных осадков (таких, как снег, дождь, туман), летающих насекомых, пыли
  • «пересвет» объектов в ближней зоне наблюдения камеры

Лицо человека, подошедшего близко, выглядит просто белым пятном, что затрудняет или вовсе делает его идентификацию невозможной. Нельзя использовать видеокамеры с ИК-подсветкой на 20 метров, если основное движение происходит на расстоянии 2-3 метров от них.

Достоинства адаптируемой («умной», «smart IR») ИК-подсветки:

Регулируемый угол подсветки

Благодаря специальным высокоточным линзам инфракрасные светодиоды формируют луч, соответствующий настройке фокусного расстояния камеры, обеспечивая всегда нужное количество света. Благодаря равномерному освещению всего поля зрения камера дает высококачественное малошумное видеоизображение даже при полном отсутствии окружающего освещения.

Регулируемая яркость подсветки

Камера автоматически регулирует экспозицию для достижения оптимального качества изображения. Если камера установлена рядом со стеной или углом, может быть целесообразно уменьшить яркость ближайшего к стене или углу светодиода, чтобы не создавать бликов, которые могут пересветить часть изображения. В зависимости от места установки и условий, в которых работает камера (например, наличие внешних источников света в поле обзора), может быть полезна ручная настройка яркости отдельных светодиодов для оптимизации ИК подсветки.

Smart IR в скоростных поворотных PTZ-камерах

За счет использования нескольких светодиодов с разными линзами и разной силой света удается оптимально согласовать освещение с полем зрения и зумом камеры. При панорамировании, наклоне и изменении увеличения форма ИК луча автоматически адаптируется к полю обзора камеры.

Одной из проблем применения встроенной ИК-подсветки является нахождение встроенных светодиодов рядом со светочувствительной матрицей

Тепловыделение светодиодов может приводить к «зашумлению» изображения, формируемого матрицей. Это делает особенно важной задачу охлаждения светодиодов. В современных PTZ-камерах с функцией Smart IR для отвода тепла и поддержания надлежащей температуры светодиодов и матрицы используются тепловые трубки. Такое решение для отвода тепла позволяет сделать купол камеры компактным и малозаметным, что вместе с использованием ближнего инфракрасного света позволяет минимизировать заметность видеонаблюдения

Как правильно подключить датчик движения — 5 схем монтажа с выключателем и без

Для того, чтобы упростить процесс управления освещением и автоматизировать его включение-отключение в определенных местах (подъезд, коридоры, вход в дом на улице и т.д.), применяются такие устройства как датчики движения.

Помимо работы в сетях освещения, они могут использоваться в охранных системах. Например для подачи звукового сигнала (рев сирены, включение звонка) при обнаружении движения в охраняемой зоне.

А еще их можно настроить на автоматическое открывание входных дверей, что широко применяется в торговых центрах и магазинах.

Давайте же рассмотрим как правильно подключить это устройство, разберем популярные схемы и перечислим ошибки, которые непосредственным образом влияют на погрешность работы прибора.

Первым делом определитесь, какая у вас модель датчика по типу подключения. Они бывают двух и трехпроводными.

Сначала изучим простейшую двухпроводную схему.

Двухпроводные датчики движения чаще всего ставят в обычные подрозетники. Общая картина его подключения состоит из 4-х элементов:

автоматический выключатель для подачи питания 220В

сам датчик

светильники

Подключение прибора аналогично монтажу одноклавишного выключателя света. То есть, вам нужно подвести питающую фазу к датчику, и через него пустить ее на светильник.

При этом связку «датчик — светильник», лучше использовать на отдельном контуре, а не сажать его на общее освещение.

Рассмотрим процесс монтажа с самого начала. Первым делом заводите трехжильный кабель ВВГнг-Ls 3*1,5мм2 от автомата в щитке в распредкоробку. Обозначаете и маркируете его жилы: фаза, ноль, земля.

Далее протягиваете уже двухжильный провод до места установки датчика.

Где его лучше всего размещать?

Классический вариант для моделей устанавливаемых в подрозетник — на высоте 1,2-2,0м от уровня пола.

Не путайте их с настенными устройствами, размещаемыми в проходных коридорах или подъездах многоэтажек, либо на входе в здание. Эти обычно задираются под самый потолок, недалеко от дверей.

Также обратите внимание, чтобы никакие открытые двери не перекрывали угол обзора датчика. Еще их не рекомендуется ставить над батареей или другими нагревательными приборами

Еще их не рекомендуется ставить над батареей или другими нагревательными приборами.

Далее, кабель идущий на светильник, также заводим в распредкоробку. Внутри нее соединяем все жилы в следующей последовательности.

Сначала ноли. От кабеля питания — на кабель светильника.

Далее заземление, если оно конечно есть.

А вот фазу с автомата, соединяем с одной из жилой, уходящей вниз на датчик (L). Вторую жилу от кабеля датчика, пускаем на светильник (L датчика).

Осталось подключить в подрозетнике сам датчик. Приходящую фазу с условным обозначением L, заводим на соответствующую клемму.

Вторую жилу подключаем на клемму, где нарисован осветительный прибор или знак «нагрузка», как на рисунке внизу.

Осталось спрятать в подрозетник весь механизм и установить декоративную рамку.

Далее на передней панели производим настройку. Для этого выкручиваете по порядку все «флажки».

1 — переводите устройство в автоматический режим

2-выставляете порог чувствительности

Дабы датчик не включался днем или в другое, не нужное вам время суток, в зависимости от уровня освещенности и силы светового потока.

3-задаете время, через которое освещение отключится, как только исчезнет движение в зоне действия прибора

На этом все. Подаете напряжение и проверяете работу всей схемы.

Преимущества подобной двухпроводной схемы и данных датчиков движения:

простота монтажа и подключения

возможность принудительного включения освещения без дополнительных выключателей света

универсальность

Поделитесь в социальных сетях:FacebookX
Напишите комментарий