Лампы дугового разряда
Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 104 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 106 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.
При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.
Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.
После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.
Рисунок 5. Трубчатая газоразрядная лампа низкого давления
Рисунок 6. Газоразрядная лампа высокого давления
Рисунок 7. Газоразрядная лампа сверхвысокого давления
Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.
Виды газоразрядных ламп.
По давлению различают:
- ГРЛ низкого давления
- ГРЛ высокого давления
Газоразрядные лампы низкого давления.
Люминесцентные лампы (ЛЛ) – предназначены для освещения. Представляют собой трубку, покрытую изнутри люминофорным слоем. На электроды подается импульс высокого напряжения (обычно от шестисот вольт и выше). Электроды разогреваются, между ними возникает тлеющий разряд. Под воздействием разряда начинает излучать свет люминофор. То, что мы видим – это свечение люминофора, а не сам тлеющий разряд. Они работают при низком давлении.
Подробнее о люминесцентных лампах — тут
Компактные люминесцентные лампы (КЛЛ) принципиально ничем не отличаются от ЛЛ. Различие только в размерах, форме колбы. Плата с электроникой для запуска, как правило, встроена в сам цоколь. Все направлено на миниатюризацию.
Подробнее об устройстве КЛЛ — тут
Лампы подсветки дисплеев также не имеют принципиальных отличий. Питаются от инвертора.
Индукционные лампы. Этот тип осветителя не имеет никаких электродов в свое колбе. Колба традиционно заполнена инертным газом (аргон) и парами ртути, а стенки покрыты слоем люминофора. Ионизация газа происходит под действие высокочастотного (от 25 кГц) переменного магнитного поля. Сам генератор и колба с газом могут составлять одно целое устройство, но есть и варианты разнесённого изготовления.
Газоразрядные лампы высокого давления.
Существуют и приборы высокого давления. Давление внутри колбы превышает атмосферное.
Дуговые ртутные лампы (сокращенно ДРЛ) ранее применялись для наружного уличного освещения. В настоящее время применяются все реже. На смену им приходят металлогалогеновые и натриевые источники света. Причина – низкая эффективность.
Внешний вид лампы ДРЛ
Дуговые ртутные лампы с йодидами (ДРИ) содержат горелку в виде трубки из плавленого кварцевого стекла. В ней находятся электроды. Сама горелка наполнена аргоном – инертным газом с примесями ртути и йодидов редкоземельных металлов. Может содержать цезий. Сама горелка размещена внутри колбы из жаропрочного стекла. Из колбы выкачан воздух, практически горелка находится в вакууме. Более современные оснащаются горелкой из керамики – она не темнеет. Применяются для освещения больших площадей. Типичные мощности от 250 до 3500 Вт.
Дуговые натриевые трубчатые лампы (ДНаТ) имеют вдвое большую светоотдачу в сравнении с ДРЛ при тех же потребляемых мощностях. Эта разновидность предназначена для уличного освещения. Горелка содержит инертный газ – ксенон и пары ртути и натрия. Эту лампу можно сразу узнать по свечению – свет имеет оранжево-желтый или золотистый оттенок. Отличаются довольно большим временем перехода в выключенное состояние (около 10 минут).
Дуговые ксеноновые трубчатые источники света характеризуются белым ярким светом, спектрально близким к дневному. Мощность лам может достигать 18 кВт. Современные варианты выполнены из кварцевого стекла. Давление может достигать 25 Атм. Электроды изготавливаются из вольфрама, легированного торием. Иногда применяется сапфировое стекло. Такое решение обеспечивает преобладание ультрафиолета в спектре.
Световой поток создается плазмой около отрицательного электрода. Если в состав паров входит ртуть, то свечение возникает возле анода и катода. К этому типу относят и вспышки. Типичный пример – ИФК-120. Их можно опознать по дополнительному третьему электроду. Благодаря своему спектру они отлично подходят для фотодела.
Металлогалогенные газоразрядные лампы (МГЛ) характеризуются компактностью, мощностью и эффективностью. Зачастую применяются в осветительных приборах. Конструктивно представляют собой горелку, помещенную в вакуумную колбу. Горелка изготовлена из керамики, либо кварцевого стекла и заполнена парами ртути и галогенидами металлов. Это необходимо для корректировки спектра. Свет излучается плазмой между электродами в горелке. Мощность может достигать 3.5 кВт. В зависимости от примесей в парах ртути возможен разный цвет светового потока. Обладают хорошей светоотдачей. Сроком эксплуатации может достигать 12 тысяч часов. При этом имеет хорошую цветопередачу. Долго выходит на рабочий режим – около 10 минут.
Металлогалогенные модели
Параметр светоотдачи у данных моделей может свободно достигать 100 ли/Вт. При всём этом металлогалогенные устройства имеют довольно компактную форму, а их поток лучей можно быстро направить с помощью отражателя. Также они могут отличиться своей особой производительностью. Использовать их на площади и на улице запрещено, но ко всему прочему лампы прекрасно переносят минусовые температуры. В доме можно применять металлогалогенные модели с разной цветовой палитрой, но минусы у такого устройства всё-таки прослеживаются. Большое количество пользователей сообщает, что у устройства происходит долгое время разжигания. В среднем его приходится ждать около 30 секунд, а на полную мощность лампа выходит небыстро, после отключения её становится довольно сложно включить обратно. Чаще всего это связывают с перегреванием цоколя. В конечном счёте пользователю придётся ждать пока устройство полностью не охладится.
Срок службы
Гореть такой источник света, по заверениям производителей, способен, как минимум, 12000 часов. Здесь все зависит от такой характеристики как мощность — чем мощнее лампа, тем дольше она служит.
Популярные модели и на сколько часов службы они рассчитаны:
- ДРЛ 125 — 12000часов;
- 250 — 12000часов;
- 400 — 15000часов;
- 700 — 20000часов.
Обратите внимание! На практике могут быть иные цифры. Дело в том, что электроды, как и люминофор, способны быстрее выйти из строя. Как правило, лампочки не ремонтируются, их проще заменить, так как износившееся изделие светит на 50% хуже
Как правило, лампочки не ремонтируются, их проще заменить, так как износившееся изделие светит на 50% хуже.
Бывает несколько разновидностей ДРЛ (расшифровка — дуговая ртутная лампа), которые применимы как в быту, так и в производственных условиях. Классифицируются изделия по мощности, где наиболее популярны модели на 250 и 500 Вт. Пользуясь ими, до сих пор создают системы уличного освещения. Ртутные приборы хороши за счет доступности и мощного светового потока. Тем не менее, появляются более инновационные образцы, безопасные и с лучшим качеством свечения.
Для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи, применяются ртутные лампы высокого давления типа ДРЛ.
Устройство
Лампа ДРЛ (смотри рисунок справа) имеет следующее строение: стеклянный баллон 1, снабжённый резьбовым цоколем 2. В центре баллона укреплена кварцевая горелка (трубка) 3, заполненная аргоном с добавкой капли ртути. Четырёхэлектродные лампы имеют главные катоды 4 и дополнительные электроды 5, расположенные рядом с главными катодами и подключенные к катоду противоположной полярности через добавочный угольный резистор 6. Дополнительные электроды облегчают зажигание лампы и делают её работу более стабильной.
В последнее время лампы ДРЛ изготовляют трехэлектродные, с одним пусковым электродом и резистором.
Принцип действия
В горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда — электролюминесценция.
При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определённого значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 10-15 минут после включения(в зависимости от температуры окружающей среды- чем холоднее тем дольше будет разгораться лампа).
Электрический разряд в газе создаёт видимое белое без красной и голубой составляющих спектра и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.
При изменении напряжения сети на 10-15 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 25-30 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.
При горении лампа сильно нагревается. Ввиду особенности, лампа ДРЛ после выключения должна остыть перед следующим включением.
Традиционные области применения ламп ДРЛ
Освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.).
Аббревиатура «ДРИ» расшифровывается, как «дуговая ртутная с излучающими добавками (иодиды и бромиды металлов)». Наряду с ртутью, в эти лампы вводятся йодиды натрия, таллия и индия, благодаря чему значительно увеличивается световая отдача (она составляет примерно 70 — 95 люмен/Вт и выше) при достаточно хорошей цветности излучения. Лампы имеют колбы эллипсоидной и цилиндрической формы. Внутри колбы размещается кварцевая или керамическая цилиндрическая горелка, где происходит разряд в парах металлов и их йодидов. Срок службы — до 8-10 тыс. часов.
Как выбирать газовую лампу
При выборе необходимо знать хаpaктеристики 3-х групп ламп:
- МГЛ (металлогалогенных);
- натриевых;
- ртутных.
Металлогалогенные газоразрядные светильники содержат пары ртути и металлов. Давление высокое, свечение мощное и яркое. Колба из боросиликатного стекла отсекает ультрафиолетовые лучи. В моделях, используемых в промышленности, колба может отсутствовать. Мощность 70-2000 ватт, цоколь один или два.
Цвет близок к белому, но с оттенками, зависящими о наполнения:
- натрий желтый;
- таллий зеленый;
- индий гoлyбой.
Доступны модели, в которых 90% белого цвета, и лампочки для подсветки аквариумов и парников с особым спектром. Для человека эти приборы более благоприятны, чем люминесцентные и натриевые.
Натриевые модели отличаются высокой светоотдачей компактными размерами. Срок службы от 25-и тыс. часов, спад потока света 10-20%. Некоторые производители к натриевым соединениям добавляют ксенон, что позволяет получить белое свечение. Модели с высокой мощностью монтируются в основном вне помещений. Из Европы поставляются лампочки с мощностью до 35 Вт, предназначенные для жилых помещений.
B люминесцентных газоразрядных лампочках ртуть жидкая, в светильниках высокого давления (1-1,5 атм.) – газообразная. Колба покрыта люминофором, преобразующим ультрафиолет. Цоколь Е127 (при мощности до 125Вт), или Е40 (при мощности от 125 Вт). Светильники этого вида способны работать до 24-х тыс. часов. При выборе светильника для помещений необходимо учесть, что эти лампочки долго запускаются и нагреваются до 300оС.
Доля красного излучения должна составлять 15%.
Схемы подключения
Схема подключения газоразрядной лампы зависит от ее вида. Металлогалогенный прибор может быть с двумя/тремя выводами. Для каждого отдельная схема (указана на корпусе).
Если контактов два, фаза подключается к цоколю и ИЗУ (импульсному зажигающему устройству) через дроссель. Ноль выходит на собственный вывод ИЗУ и контакт, расположенный на боку цоколя. Если контакта три, ноль подключается так же, фаза – на 2 вывода ИЗУ. В ПРА может монтироваться конденсатор, компенсирующий реактивную мощность.
Схемы подключения натриевых лампочек:
- ИЗУ подключается параллельно к прибору (для небольшой мощности);
- вместо трaнcформатора дроссель, подключенный к контакту светильника;
- последовательное подключение дросселя, лампочки и ИЗУ.
К любой из схем можно подключить конденсатор.
Для установки ртутных газоразрядных лампочек используется дроссель (ограничитель тока) и пpeдoxpaнитель. Возможно подключение конденсатора.
Возникает вопрос, как подключить такой источник света. Если он куплен для дома или квартиры, лучше пригласить электрика.
Особенности эксплуатации
Монтаж и замену газоразрядных осветительных приборов обязательно должен проводить специалист, способный проверить параметры и предотвратить разрушение. Во время работы руки защищаются перчатками. Необходимо учитывать, что при сильном перегреве и воздействии влаги эти лампочки могут разрушаться, поэтому желательно устанавливать их в закрытых светильниках
Эксплуатация полностью прекращается при разрушении колбы. Неисправные приборы нельзя выбрасывать в контейнеры и мусоропроводы. Их нужно упаковать и утилизировать с привлечением специализированных компаний, предоставляющих подобные услуги.
Устройство дуговой ртутной лампы
Первые горелки, которые применялись в этом типе световых источников имели 2 электрода, это требовало наличия дополнительного устройства, которое генерирует мощные импульсы для зажигания дуги. Напряжения горения ламп ниже, чем напряжение запуска. Первым устройством было ПУРЛ-220 – Пусковое Устройство Ртутных Ламп. 220 – это рабочее напряжение в вольтах. ПУРЛ-220 было недолговечным, так как базировалось на газовом разряднике. В семидесятые годы двухэлектродные лампы были сняты с производства. На смену пришли горелки с четырьмя электродами. Им не требовалось внешнего устройства для запуска. Запуск происходит намного проще.
1 – основной электрод.
2 — поджигающий электрод.
3 – выводы электродов из горелки.
4 – аргон.
5 – резистор (сопротивление).
6 – ртуть.
В основе работы лежит два процесса:
- Электрическая дуга между электродами.
- Процесс люминесценции.
Внешний корпус изготавливают из специального жаропрочного стекла. Из колбы – внешнего корпуса откачан воздух. Вместо него закачан азот, либо инертный газ. Его предназначение – предотвращение теплообмена между горелкой и колбой. Тем не менее температура баллона может достигать 120 градусов. Цоколь предназначен для фиксации в патроне подключения. Внутренняя часть колбы покрыта изнутри люминофорным слоем. Люминофор – вещество, которое способно светиться в видимом нами спектре при облучении ультрафиолетом, либо при бомбардировке электронами. В случае с ДРЛ лампами – ультрафиолетовым излучением. Светящимся телом является электрическая дуга между электродами. Из-за наличия люминофорного покрытия колба непрозрачная.
В момент, когда лампа не подключена и холодная, ртуть может быть либо в виде шарика, может быть в виде тонкого слоя на стенках горелки.
Горелка представляет собой трубку из кварцевого стекла (либо специальной тугоплавкой прозрачной керамики), так как оно термостойкое и пропускает ультрафиолетовое излучение. Внутри находится строго дозированные порции инертного газа. Ультрафиолет вызывает свечение люминофорного слоя. Это самая главная часть — излучатель.
Резисторы необходимы для ограничения пусковых токов.
Схема включения люминисцентной лампы со стартером (preheat start)
Традиционная схема, используемая очень давно, в случае когда напряжение сети достаточно для зажигания лампы. В ней используется балласт, представляющий собой большое индуктивное сопротивление — дроссель, и стартер — маленькая неоновая лампа, служащая для предварительного подогрева электродов лампы. Параллельно неоновой лампе в стартере стоит конденсатор для уменьшения радиопомех. Также в схему может включатся и конденсатор для улучшения коэффициента мощности.
При включении лампы в сеть, вначале, возникает разряд в стартере и через электроды лампы проходит небольшой ток, который подогревает их, тем самым уменьшая напряжение зажигания лампы. При возникновении разряда в лампе, напряжение между электродами падает. отключая цепь стартера. В старых схемах вместо стартера использовалась кнопка, которую надо было держать в течении нескольких секунд.
Балласт используется только для ограничения тока. Параметры балласта рассчитать несложно самим (в случае, если вы нашли на помойке дроссель и хотите его использовать).
Определить параметры индуктивного балласта можно очень несложно пользуясь правилами расчета цепей перменного тока. Для примера рассмотрим лампу мощностью 40Вт (F40T12) длиной 48″ (122 см), включенную в сеть напряжением 230В
Рабочий ток лампы составляет около 0.43A. Коэффициент мощности лампы равен примерно 0.9 (в принципе, можно считать лампу активной нагрузкой). Напряжение на лампе равно: 40Вт/(0.43А*0.9)=102В. Активная составляющая напряжения равна: 102В*0.9=92В, реактивная равна 102В*sqrt(1-0.9^2)=44В. Потери мощности в балласте составляют 9-10Вт. Отсюда, суммарный коэффициент мощности равен: (40Вт+10Вт)/(230В*0.43A)=0.51 (сюда явно просится корректирующий конденсатор). Активная составляющая падения напряжения на балласте равна: 230В*0.51-102В=15В, реактивная составляющая 230В*sqrt(1-0.51^2)-44В=154В. Активное сопротивление балласта равно 15В/0.43А=35 Ом, реактивное 154В/0.43=358 Ом. Индуктивность балласта на частоте 50Гц равна 358/(2*31.4*50)=1.1Гн
Аналогичный расчет для лампы мощностью 30Вт (F30T12) длиной 36″ (91 см), у которой рабочий ток 0.37А, дает параметры балласта — активное сопротивление равно 59 Ом, реактивное 450 Ом. Суммарный коэффициент мощности равен 0.45. Индуктивность балласта 1.4Гн
Отсюда, вообщем-то понятно, что произойдет если использовать балласт для 40Вт лампы в схеме с 30Вт лампой — ток будет превышать номинальное значение, что приведет к более быстрому выходу лампы из строя. И наоборот, использование балласта от менее мощной лампы в схеме с более мощной лампой приведет к ограничению тока и пониженной светоотдачей.
Для улучшения коэффициента мощности можно использовать конденсатор. Например, в первом примере, для лампы 40Вт, конденсатор, включенный параллельно, рассчитывается следующим образом. Ток через конденсатор 0.43А*sqrt(1-0.51^2)=0.37A, реактивное сопротивление конденсатора равно 230В/0.37А=622Ом, емкость для сети 50Гц равняется: 1/(2*3.14*50*622)=5.1мкФ. Конденсатор должен быть на 250В. Его можно включить и последовательно (рассчитывается аналогично), но при этом надо использовать конденсатор на 450В.
к началу страницы назад к оглавлению |
Специфика применения: плюсы и минусы ламп
Осветители типа ДРЛ преимущественно устанавливаются на столбах для освещения улиц, проезжих дорог, парковых зон, придомовых территорий и нежилых сооружений. Это обусловлено техническими и эксплуатационными особенностями ламп.
Главный плюс ртутно-дуговых приборов – высокая мощность, обеспечивающая качественное освещение просторных площадей и крупных объектов.
Стоит отметить, что паспортные данные ДРЛ по световому потоку актуальны для новых ламп. Спустя квартал яркость ухудшается на 15%, через год – на 30%
К числу дополнительных достоинств можно отнести:
- Долговечность. Средний срок работы, заявляемый производителями, – 12 тысяч часов. При этом, чем мощнее лампа, тем она дольше прослужит.
- Работа при низких температурах. Этот решающий параметр при выборе осветительного прибора для улицы. Газоразрядные лампы морозостойки и сохраняют свои рабочие характеристики при минусовых температурах.
- Хорошая яркость и угол освещения. Светоотдача ДРЛ-приборов зависимо от их мощности колеблется в пределах 45-60 Лм/В. Благодаря работе кварцевой горелки и люминофорному покрытию колбы достигается равномерное распределение света с широким углом рассеивания.
- Компактность. Лампы относительно небольшие, длина изделия на 125 Вт около 18 см, прибора на 145 Вт – 41 см. Диаметр – 76 и 167 мм соответственно.
Одна из особенностей использования осветителей ДРЛ – необходимость подключения к сети через дроссель. Роль посредника – ограничение тока, питающего лампочку. Если подсоединить осветительный прибор в обход дросселя, то из-за большого электротока он сгорит.
Схематично подключение представлено последовательным соединением ртутной люминофорной лампы через дроссель к сети питания. Во многие современные осветители ДРЛ уже встроен пускорегулирующий механизм – такие модели дороже обычных ламп
Ряд недостатков ограничивает применение ДРЛ-светильников в быту.
Значимые минусы:
- Длительность розжига. Выход на полную освещенность – до 15 минут. Для разогрева ртути требуется время, что в условиях дома очень неудобно.
- Чувствительность к качеству электроснабжения. При понижении напряжения на 20% и более от номинального значения, включить ртутную лампу не получится, а светящийся прибор потухнет. При снижении показателя на 10-15% – ухудшается яркость света на 25-30%.
- Шум при работе. ДРЛ-светильник издает жужжащий звук, не заметный на улице, но ощутимый в помещении.
- Пульсация. Несмотря на применение стабилизатора, лампочки мерцают – выполнять длительную работу при таком освещении нежелательно.
- Низкая цветопередача. Параметр характеризует реальность восприятия окружающих цветов. Рекомендованный индекс цветопередачи для жилых помещений – не менее 80, оптимально – 90-97. У ламп ДРЛ значение показателя не достигает 50-ти. При таком освещении невозможно четко различать оттенки и цвета.
- Небезопасность применения. В процессе работы выделяется озон, поэтому при эксплуатации лампы внутри помещения требуется организация качественной вентсистемы.
Кроме того, наличие в колбе ртути само по себе представляет потенциальную опасность. Такие лампочки после использования нельзя просто выбросить. Чтобы не загрязнять окружающую среду, они утилизируются соответствующим образом.
Еще одно ограничение применения газоразрядных ламп в быту – необходимость их установки на значительной высоте. Модели мощностью 125 Вт – подвес в 4 м, 250 Вт – 6 м, 400 Вт и мощнее – 8 м
Существенный минус ДРЛ осветителей – невозможность повторного включения до полного остывания лампы. При работе прибора давление газа внутри стеклянной колбы сильно повышается (до 100 кПа). Пока лампа не остынет, пробить искровой промежуток напряжением запуска невозможно. Повторное включение происходит примерно через четверть часа.
Как работает лампочка
С конструкционными особенностями, которые имеют газоразрядные лампы, мы разобрались в предыдущем разделе. Также вскользь коснулись и того, какой принцип работы имеет это изделие. Теперь рассмотрим принцип работы более детально, чтобы понять, каким же именно образом формирует освещение подобный тип источника света.
Принцип работы лампы
Газоразрядная лампа – особые источники освещения, которые способны генерировать свет вследствие создания внутри своей колбы электрического разряда. Принцип работы такой лампы основывается на ионизации газа, который находится внутри стеклянной колбы. Принцип, по которому работает газоразрядная лампочка, предполагает, что внутри колбы под давлением закачивается определенный газ. Чаще всего для освещения домов, улиц и авто используются благородные (инертные) газы:
- неон;
- криптон;
- аргон;
- ксенон;
- смесь газов в различных пропорциях.
Ртутная модель
Очень часто для освещения домов, авто и улиц используются такие источники света, в состав которых входят дополнительные газы. Например, в состав газовой смеси может входить натрий (натриевые модели) или ртуть (ртутные модели)
Обратите внимание! Ртутные лампочки сегодня имеют большее распространение, чем натриевые. Их часто вставляют в фонари при создании уличного типа освещения
Также они применяются для подсветки домов изнутри.
Ртутные и натриевые модели входят в группу металлогалогенных источников света. Когда на газоразрядную лампочку подается питание, в трубке начинает генерироваться электрическое поле. Оно приводит к ионизации газа и свободных электронов. В результате этого электроны, которые вращаются на верхних уровнях атомов, начинают сталкиваться с другими электронами атомов металла (специальных добавок в газовые смеси). В результате столкновения происходит переход электронов на внешние орбитали. В конечном итоге происходит высвобождение энергии и фотонов. Таким образом и формируется свечение лампочки.
Вариант свечения лампы
Чтобы добиться различного цветового свечения, на колбу газоразрядных ламп наносят специальное люминесцентное покрытие. Им покрывают внутреннюю сторону колбы. С помощью такого покрытия происходит преобразование ультрафиолетового излучения в видимый свет.
Обзор лампы “Филипс 422”
Данная ртутная газоразрядная лампа производится эллипсоидной формы. Патрон в этой модели установлен класса У40. Потребляемая мощность устройства достигает 250 Вт. При этом параметр яркости колеблется в районе 12000 лм. Колба в данной модели имеется матового цвета. Параметр световой температуры находится на уровне 4000 К. Длина данной модели составляет целых 228 мм, а диаметр у нее – 91 мм. Прослужить “Филипс 422” способна, как уверяют производители, 6000 часов. Питается модель от сети с напряжением 220 В. Обойдется она покупателю на рынке в среднем в 270 руб.
В итоге “Филипс 422” получилась с хорошей световой отдачей, однако не большой производительностью, поэтому использовать данный тип ламп на улице крайне не рекомендуется. Особенно лампа страдает при минусовых температурах.
Еще данная модель выделяется пониженной цветопередачей из-за слабого спектра лучей. Работает этот тип устройства исключительно на переменном токе. Чтобы включить “Филипс 422”, потребуется в обязательном порядке балластный дроссель. Пульсация светового потока у этих ламп довольно высокая, что огорчает. В заключение следует упомянуть о том, что их яркость под конец службы значительно понижается.
Как выбирать газовую лампу
При выборе необходимо знать хаpaктеристики 3-х групп ламп:
- МГЛ (металлогалогенных);
- натриевых;
- ртутных.
Металлогалогенные газоразрядные светильники содержат пары ртути и металлов. Давление высокое, свечение мощное и яркое. Колба из боросиликатного стекла отсекает ультрафиолетовые лучи. В моделях, используемых в промышленности, колба может отсутствовать. Мощность 70-2000 ватт, цоколь один или два.
Цвет близок к белому, но с оттенками, зависящими о наполнения:
- натрий желтый;
- таллий зеленый;
- индий гoлyбой.
Доступны модели, в которых 90% белого цвета, и лампочки для подсветки аквариумов и парников с особым спектром. Для человека эти приборы более благоприятны, чем люминесцентные и натриевые.
Натриевые модели отличаются высокой светоотдачей компактными размерами. Срок службы от 25-и тыс. часов, спад потока света 10-20%. Некоторые производители к натриевым соединениям добавляют ксенон, что позволяет получить белое свечение. Модели с высокой мощностью монтируются в основном вне помещений. Из Европы поставляются лампочки с мощностью до 35 Вт, предназначенные для жилых помещений.
Характеристики люминесцентных ламп
Люминесцентная газоразрядная лампа может выпускаться с различной конфигурацией. Наиболее распространенными считаются кольцевые и панельные типы. Средняя мощность люминесцентных ламп составляет 100 Вт. При этом самые компактные модели выпускаются на 5 Вт. В свою очередь, максимум показатель мощности может доходить до 80 Ватт. Минимальная длина цоколя равняется 8 см, а большие кольцевые люминесцентные лампы производятся с размером 15 см.
Существуют различные цоколи со следующими маркировками: H23, G24, 2G7 и 2G13. В свою очередь, патроны выпускаются классов Е14 и Е27. Как правило, все модели имеют встроенный электронный пускорегулирующий аппарат. По спектрам свечения люминесцентные лампы делятся на модели с желтым, белым, синим и зелеными цветами.
Область применения
Конструкционные особенности, которыми обладают газоразрядные лампочки, обеспечили им обширную область применении. Сегодня подобная продукция применяется для:
- создания уличного освещения в городской и сельской местности. Отлично такие лампы смотрятся, если они вкручиваются в фонари для создания качественной подсветки парков и скверов;
- освещения производственных сооружений, магазинов, торговых площадок, офисов, а также общественных помещений;
- с помощью газоразрядных источников света, которые вкручены в фонари, можно оформить уличную декоративную подсветку зданий или пешеходных дорожек;
- подсветки наружной рекламы и рекламных щитов;
- высокохудожественного освещения эстрад и кинотеатров. Но здесь необходимо применение специального оборудования.
Освещение в авто
Отдельно стоит отметить, что источники света газоразрядного типа сегодня очень часто используются для освещения транспортных средств. Здесь зачастую применяются грл с высокой интенсивностью (например, неоновые). Многие авто имеют в своей комплектации фары, которые заполнены газообразной смесью из металлогалоидных солей и ксенона. Такие фары можно встретить в таких марках, как БМВ, Тойота или Опель. Иногда подобные лампочки можно встретить и в подсветке дома. Но здесь необходимо обязательно учитывать специфику источников света, чтобы их недостатки можно было минимизировать. Но в целом область применения данной продукции достаточно обширна и разнообразна.
Заключение
Свет нужен всем, всегда и везде. Без него сложно обходиться всему живому. Он важен человеку для нормальной и комфортной жизни, позволяет создать в помещении особую атмосферу тепла и уюта, стимулирует рост растений в теплицах, позволяет автомобилям безопасно передвигаться по дорогам в темное время суток. В последнее время лучшие производители начали выпускать часы с газоразрядными индикаторами. Это позволяет привнести в атмосферу помещения немного сказочности, ощущение дыхания прошлых столетий, подарить тепло окружающим. Газоразрядные лампы пользуются повышенным спросом у отечественных потребителей благодаря экономичности, приемлемой цене, функциональности, долговечности.