Блуждающие токи и способы борьбы с ними

Необходимость заземления

В многоэтажных домах старого (советского) образца металлические отопительные стояки изначально заземлены в следующих случаях:

  1. Полотенцесушитель связан с отопительной системой посредством металлической трубы.
  2. В ходе реконструкции установлена индивидуальная система отопления.

В заземлении полотенцесушителя есть необходимость в таких случаях:

  1. Устройство подключено к отопительной системе через металлопластиковую трубу, которая оснащена алюминиевой прослойкой, проводящей токи. Однако на участке фитинга происходит разрыв электроцепи.
  2. Домовой стояк изготовлен из металлопластиковых труб.

Инновационная технология защиты полотенцесушителей

Наибольшей проблемой блуждающих токов считается электрокоррозия. Полотенцесушитель и так подвержен достаточно высокой степени риска. Из-за того, что по трубам проходит горячая вода, на внутренних стенках скапливаются соли, мешающие проходу теплоносителя. В связи с воздействием на воду электричества возникает эффект гальванической коррозии, когда ускоряется выпадение и осаждение солей, а так же усиливаются коррозионные процессы металла, иначе говоря ржавчина начинает в разы сильнее воздействовать на трубу.

В совокупности все эти факторы приводят к быстрому выходу из строя полотенцесушителя. Обычно производителя говорят о 5 годах службы, но полотенцесушитель из нержавейки по факту способен выдержать и 20-30 лет использования.

В случае наличия блуждающих токов, электрокоррозия уничтожит металл за 2-3 года и к производителю будет не придраться. Во всем виноват неправильный монтаж.

Однако производители полотенцесушителей постарались предусмотреть этот факт и сделать более дорогие изделия с защитой от коррозии. Это средство подают в рекламе, как защита направленная именно на электрокоррозию, но по факту инновация защищает и от осаждения солей.

Чтобы сберечь полотенцесушитель, производитель покрывает внутреннюю поверхность трубы специальным полимером. Таким образом, электричество с трубы не может воздействовать на воду. Внутренняя поверхность при этом становится гладкой, что мешает осаждению солей, а значит, такое покрытие защищает трубы от зарастания.

Но не стоит думать, что такая инновация является панацеей. Нельзя забывать о том, что блуждающие токи это не только электрокоррозия, но и опасность удара электричеством. С точки зрения коррозионной активности, покрытие действительно убережет полотенцесушитель. Но в целях собственной безопасности, лучше сделать заземление полотенцесушителя.

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.


Нагревание как одно из свойств

Причины возникновения электрокоррозии

Появление вихревых токов Фуко – довольно сложное непредсказуемое явление. В системах горячего водоснабжения, а порой и в системе отопления такие токи появляются из-за многих причин, казалось бы не связанных между собой.

Вообще, вихревые токи образуются при разности потенциалов. При строительстве дома, все металлические конструкции подключаются к общему контуру заземления, причем раньше в строительстве использовали заземление по контуру, а сейчас довольствуются методом уравнивания потенциалов.

Когда в квартире вместо существующей металлической системы ставят пластиковые – разность потенциалов возникает из-за разрыва заземления (например, на полотенцесушителе один потенциал, а на стояке – совсем другой). Отсюда и разность потенциалов, отсюда и блуждающие токи. Еще они могут возникать в результате короткого замыкания, отсутствия заземления близнаходящихся электрических бытовых приборов, будь то стиральная машина и так далее.

Даже наличие/отсутствие трамвайных путей в непосредственной близости играет роль. Блуждающие токи возникают также при нарушении изоляции электропроводки, обрыва сети, заземления, сделанного на систему отопления.

Все это ведет к электрокоррозии сантехники, к ней еще приводит соседство двух разных материалов, особенно нержавеющей и черной стали. То место, через которое в полотенцесушитель проходит заряд, в результате подвергается электрохимической реакции, поэтому там образуется повреждение. Такие проблемы обычно решаются непосредственно заземлением самого полотенцесушителя.

При покупке водяного полотенцесушителя необходимо ознакомиться с правилами его эксплуатации, в частности, обратить внимание нужно ли заземлять полотенцесушитель или нет, чтобы учесть этот момент во время ремонта, а не после того, как ремонт будет завершен

Виды и появления блуждающих токов

Одна из причин связана с массовым применением рельсового электротранспорта. Электрифицированные ЖД магистрали, трамваи и метро, рудничная локомотивная контактная откатка становятся причиной появления блуждающих токов и наносят ущерб газовым трубопроводам, водопроводным линиям, бронированным кабельным сетям, металлоконструкциям.

Общая схема происходящего в этом случае следующая:

  1. Рельсовый путь используется в качестве проводника, по которому ток возвращается к обратному фидеру тяговой подстанции.
  2. На участках, которые плохо изолированы от земной поверхности, происходит утечка части энергии в грунт. Так как потенциал в этой точке максимален, появляется блуждающий ток, который движется в зону с небольшим потенциалом. А таким участком и становится труба или кабель в оплётке, любая металлическая конструкция, расположенная в земле.
  3. Пройдя по металлу, как по пути наименьшего сопротивления, в зону, где потенциал существенно уменьшается, ток выходит в грунт и возвращается в рельсовый путь.

В результате таких процессов в анодных зонах, участки выхода токов из рельсов и трубопровода, возникает процесс электрохимической коррозии. При этом скорость разрушения металлов может достигать десятка миллиметров в год. Для рельсового пути такие повреждения несущественны из-за большой толщины стали, хотя также снижают срок службы конструкции.

А вот для труб с небольшой стенкой такие повреждения становятся критичными. Выглядят они как сквозные отверстия небольшого диаметра. Если трубопровод находится в зоне длительного воздействия блуждающих токов без надлежащей защиты, может возникнуть ситуация, когда его поверхность напоминает решето.

Среди двух других потенциальных источников возникновения блуждающих токов выделяют:

  1. Трансформаторные подстанции, распределительные устройства с заземляющим оборудованием, линии ЛЭП с глухозаземлённой нейтралью. В случае постоянных небольших утечек на землю, уровень которых не достигает предела срабатывания защитных устройств, в зоне вокруг этих сооружений также возникают паразитные блуждающие токи.
  2. Электрокабельные сети подземного заложения также становятся причиной подобного эффекта при снижении диэлектрических свойств изоляции или её пробое.

Объяснение схемы выше: нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Понятно, что в большинстве случаев разрушающее воздействие в таких условиях будет меньше, чем в зонах расположения рельсовых путей электротранспорта, но оно также оказывает своё влияние.

Причина появления тока в домашнем быту

Существует ещё один вид блуждающего тока, который правда не связан с процессами, происходящими в земле. Речь идёт о появлении аналогичных повреждений на стальных полотенцесушителях, радиаторов отопления, установленных в обычных зданиях. Основной причиной становится разница потенциалов на этих устройствах и заземлённых участках водопровода или системы отопления.

Раньше все эти сети монтировались из металлических труб и обязательно заземлялись. Поэтому в пределах одного здания разницы потенциалов на отдельных участках или элементах системы не существовало или она была настолько минимальной, что не приносила никакого вреда.

Сейчас ситуация кардинально изменилась, и причиной этого стало массовое применение полипропиленовых и металлопластиковых труб. Полимерные материалы обладают высоким удельным сопротивлением, поэтому их можно считать хорошими диэлектриками. В результате получают изолированные друг от друга участки сети. При этом вода остаётся хорошим проводником, она отлично переносит скапливающийся статический заряд.

Поэтому и происходит появление эффекта блуждающих токов, вызванного разницей потенциалов на заземлённом участке сети и отдельных полотенцесушителях или батареях. В этом случае электрохимическая коррозия быстро разрушает тонкостенные металлические устройства.

Методы измерения

Для того чтобы определить места, где наиболее вероятно образование блуждающих токов, необходимо выполнять измерения. Полученная информация о блуждающих постоянных токах позволяет более эффективно построить защитные мероприятия. Измерения представляют собой систему мероприятий, включающую такие элементы:

  • Определение сопротивления между грунтом и рельсами электротранспорта.
  • Вычисление разности потенциалов между рельсами, по которым перемещается электротранспорт и подземными трубопроводами.
  • Подробное изучение возможных утечек электроэнергии с кабеля на всём протяжении его длины.

При выполнении замеров на путях электротранспорта нужно выбирать время наибольшей активности. Используемые приборы должны иметь класс точности не менее 1,5.

При прокладке подземных трубопроводов измерения блуждающих токов проводят через каждые 1000 м. Если аналогичные конструкции расположены параллельно, то измерения выполняют с промежутком 200 м. В этом случае проводят сравнение показателей вдоль каждого трубопровода. Дополнительно проводят измерение разности потенциалов между ними.


Как выглядит коррозия на полотенцесушителеИсточник aquanerzh.ru

Способы защиты

Для защиты могут применяться различные методы Их разделяют на две основных разновидности: пассивные и активные. В первом случае речь идёт о надёжной изоляции труб от окружающего грунта. Для этого можно использовать несколько слоёв защиты. 


Наземный городской электрический транспортИсточник amperof.ru

Когда нужно исключить блуждающие токи в водопроводных трубах, могут применяться битумные мастики, специальные оболочки, изоляционные ленты

Работы нужно проводить с осторожностью, так как механические повреждения защитного слоя могут стать местами, где происходит активное разрушение объекта.. Эффективным способом защиты является замена металлических труб на пластиковые

После этого они перестанут быть местом, где протекает ток. В результате прекратятся электролитические процессы, разрушающие конструкцию.

Эффективным способом защиты является замена металлических труб на пластиковые. После этого они перестанут быть местом, где протекает ток. В результате прекратятся электролитические процессы, разрушающие конструкцию.

Для изоляции рельсов от грунта прокладывают специальную защиту. В результате пути располагаются выше, чем обычно. Обычно для этой цели используются насыпи из не проводящего электричество материала. Это приводит к увеличению затрат и не всегда приемлемо для электротранспорта, маршрут которого находится в городской черте.

При проектировании трубопроводов, расположения электрических кабелей, маршрутов электротранспорта стараются по возможности разнести их на значительное расстояние.

На практике редко удаётся сделать пассивную защиту от блуждающих токов достаточно надёжной. Поэтому наибольшее распространение получили активные методы. Их использование требует установки дополнительных рабочих конструкций и связано с дополнительными затратами электроэнергии. Действие такой защиты охватывает всего несколько десятков метров.

Принцип работы таких методов связан с ликвидацией анодных зон на защищаемых объектах. При этом разрушительное воздействие тока переключается на специальные объекты, разрушение которых не причинит вреда защищаемой конструкции. Для этого в нужных местах устанавливают станции катодной защиты. Знание того, что такое блуждающие токи, позволяет выстроить эффективную защиту от них.

Стоимость их использования пренебрежимо мала по сравнению с возможными проблемами. Поэтому их применение считается очень выгодным.

При использовании катодных станций подают положительный потенциал на защищаемый объект. Недалеко от него располагают катоды. На них дают отрицательный. Вследствие перераспределения энергии анодные зоны создаются на дополнительно установленных катодах. Металлические молекулы с них активно испарятся, постепенно приводя детали в негодность. В этом случае их сразу заменяют.


Результат воздействия блуждающих токовИсточник asutpp.ru

На объекте из-за блуждающих токов исключается образование анодных зон и разрушение не происходит

При установке защиты важно правильно произвести расчёты. При ошибке конструкция станет действовать противоположным образом — станет источником разрушения защищаемого объекта

Поэтому для каждого объекта планирование нужно производить с учётом его особенностей. 


Пассивная защита с использованием нескольких слоёвИсточник asutpp.ru

Защита от блуждающих токов может быть создана следующим образом. Для этого нужно подать определённый потенциал на защищаемый объект. В результате прекратится протекание через него блуждающих токов.

Для защиты может быть использован электродренажный метод. В этом случае в месте, где ожидается появление анодной зоны трубу соединяют проводником с местом, которой является источником проблемы и создаёт соответствующий потенциал. В этом месте исчезает разность потенциалов, которая была причиной для образования анодной зоны.


Использование активной защиты при помощи постоянного токаИсточник oooevna.ru

Обозначение понятия

Блуждающие токи – это заряженные электрочастицы с конкретной траекторией движения, появляющиеся в земля, являющейся проводником. Термин блуждающие появился в виду того, что невозможно предугадать локализацию частиц и начало появления процесса. Воздействие блуждающих электрочастиц очень плохо проявляется на железных изделиях, присутствующих над землёй и под ней.

Такие же процессы появляются из-за растущего количества электрифицированных объектов, являющихся основой современных стран. А так как почва проводник для электричества, выполняется взаимное действие между элементами.

Появляются блуждающие частицы сродни электрическим, для взаимного действия которых требуется сравнение разности потенциалов в 2-х произвольных точках, исключительно для блуждающего варианта проводник – это земля. В результате находящийся железный материал вблизи процесса рушиться быстрее из-за коррозии.

Правила выполнения замеров

Чтобы оценить всю степень сложившейся ситуации с утечкой электрозарядов необходимо выполнить ряд мероприятий:

  • измерение напряжения и устремление тока по оболочкам кабелей магистрали;
  • определение разности потенциалов между контактными рельсами и находящимися в почве трубопроводами;
  • проверка уровня изоляции рельсов от грунтового покрытия, использовав для эксперимента участок полотна;
  • оценка плотности утечки энергии с оболочки кабелей в грунт.

Чтобы выполнить замеры, применяется специальный прибор, если мероприятия проводить на железнодорожных полотнах необходимо выбирать час пик движения транспорта.


Инструменты для замера

Для проверки применяют трансформаторы и подстанции у линии движения – электрод, подключенный к прибору, соединяют с ЗУ и втыкают в 10 метрах от подстанции. Вся возникающая разность фиксируется прибором.

Если предстоит укладка линии труб для водоснабжения важно выявить локацию блуждающих токов, с этой целью определяется разность потенциалов между двумя выборочными точками поверхности земли, размещенными перпендикулярно друг к другу с соблюдением равного расстояния. Такое определение важно выполнять систематически с разрывом в километр

При этом используемые приборы обязательно должны иметь класс точности не ниже 1,5, а сопротивление оборудования от 1 МОм. Применение измеряющих электродов с разностью потенциалов выше 10 мВ. Время проведения одного замера обязательно проходит в пределах 10 мин, а разрыв между процессами 10 сек.

Блуждающие токи, защита трубопровода и газопровода от блуждающих токов: поиск и проверка

автор Администратор Главный

Электрические токи, время и место появления которых пока не поддается предварительному прогнозу, называются блуждающими. В отличие от тех электрических токов, которые действуют стационарно и влияние которых на объект можно скомпенсировать с помощью тех или иных мер, блуждающие токи появляются непредсказуемо в непредсказуемом месте.

От их направления зависит какой процесс происходит в объекте, через который протекает электрический ток. Если объект имеет положительный потенциал относительно другого объекта или среды, при контакте с которой возникают электрические токи, то наблюдается коррозия (окисление).

Если объект имеет отрицательный потенциал, то на нем происходит восстановление параметров того вещества, которое имеется в жидкости, входящей в состав среды, через которую протекает электрический ток. Так как химическая активность элементов, находящихся в контакте с жидкой средой, представляющей электролит, обычно неизвестна, то неизвестно время и место появления блуждающего тока.

Как считается сейчас, наличие его приводит к коррозии того объекта, который имеет положительный потенциал относительно жидкой среды, по которой протекает ток ионов. 

В качестве основной меры, обеспечивающей устранение коррозии в протяженных трубопроводах, применяют их катодную защиту. Для этого на трубу подается достаточно высокое значение отрицательного потенциала, который гарантирует отрицательный потенциал на трубе при любых значениях параметров, которые вызывают блуждающие токи в трубопроводах.

В известных технических решениях на трубу подается потенциал 6 кВ. Считается, что при любых реальных значениях среды и электролита в цепи отсутствует положительный ток, который вызывает коррозию.

Происходит, так называемая защита трубопровода от блуждающих токов, которая достаточно эффективна, но имеет недостаток: компоненты, входящие в состав прокачиваемой среды, осаждаются на ее внутренней поверхности.

Единственно эффективной мерой защиты трубы от коррозии блуждающими токами, является сведение к нулевому значению токов, которые протекают по ней на различных участках. Для этого труба разбивается на участки, на которые подаются напряжения, обеспечивающие «нулевые» (малые) токи между трубой и окружающей ее средой.

«Уравнительный» ток между участками будет протекать по трубе, и не будет вызывать коррозию. Причем нулевое значение тока между трубой и окружающей средой можно поддерживать автоматически, с помощью, специальных средств аналоговой электроники.

Значение выходного напряжения у операционных усилителей будет зависеть от значений блуждающих токов и расстояния, на котором они размещены. При большом количестве источников блуждающего тока, количество участков между усилителями их компенсации будет существенно больше и больше динамический диапазон изменений их выходных напряжений.

Усилители должны быть охвачены стопроцентной отрицательной обратной связью и иметь малый собственный дрейф нуля.

При динамическом диапазоне усилителей, выходное напряжение которых может достигать десятков вольт, возможен случай, когда коррозия от электрических токов и осаждение на стенку перекачиваемого продукта будут практически отсутствовать (при использовании усилителей мало чувствительных к синфазному сигналу). Уравнительный ток между участками будет протекать по трубе и по «земле», не вызывая коррозии у трубы.

Уровень блуждающих токов зависит:

  • от электрохимического потенциала объектов, между которыми протекает электрический ток;
  • от состава среды (электролита) между объектами;
  • от расстояния, по которому протекает электрический ток;
  • от наличия электромагнитных полей, пронизывающих объекты и электролит, которые могут создавать выделение радианной энергии (феномен Тесла).

Последнее — особенно опасно, если электромагнитные поля изменяются достаточно быстро.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объектаВзаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям.При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали.Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью.Наличие технологической связи между одним из проводников и землей.

Разрушение металла в зависимости от почвы. Подземная коррозия трубопроводов

Металлические изделия служат нам не только в атмосферных условиях, но часто находятся в земле. Трубопроводы, по которым текут вода, газ, нефть, очень часто делают из металла и прокладывают под землей. Под землей также размещают кабели, по которым подают электрический ток или осуществляют телеграфно-телефонную связь. Почва, как вам известно, представляет собой смесь различных веществ. В ее состав входят минералы и различные органические вещества, являющиеся продуктами гниения. Почвенная вода всегда содержит растворы солей и кислот, т. е. она электролит. Вот почему так тщательно покрывают изоляционными материалами металлические трубы, прежде чем они будут зарыты в почву. Правда, по своим свойствам почва может быть различна. При раскопке трубопроводов в окрестностях Батуми, проложенных в 1878 г., т. е. труб, которые пролежали в почве около ста лет, выяснилась интересная картина. На отдельных участках не осталось и следа от металлических труб, так как они полностью были разрушены. В то же время в тех местах, где трубы проходили по глинистой почве, они полностью сохранились. Вид их был такой, как будто бы они только что были зарыты в землю. Следовательно, в глинистой почве не было доступа к металлу электролитов и кислорода, способствующих разрушению металла. Трубы здесь были изолированы самой почвой. Вот такую же роль играет покрытие труб различного рода смолами. Однако в больших городах такого рода покрытия не всегда сохраняют металл от разрушения. Коварную роль здесь играет электрический ток.

Это интересно: Низкое напряжение в сети – что делать и куда жаловаться

Характеристики прибора измерения блуждающих токов трубопровода

  • «Дар» имеет два независимых измерительных входа, каждый из которых содержит четыре диапазона измерений: ± 100, ± 10, ± 1 и ±0,1 В. Выбор диапазона измерений производится прибором автоматически в зависимости от величины сигнала или фиксировано при программировании прибора. Погрешность измерения в каждом из диапазонов не более 0,2% от максимального значения диапазона.
  • «ДАР» по входу имеет защиту от перенапряжения ± 200В. Входное сопротивление каждого канала — 10 МОм. Значение интервала между измерениями задается предварительно и может находится в диапазоне от 0,5 до 120 с.
  • Память прибора позволяет запоминать до 110 000 измеренных значений блуждающих токов.
  • Питание пpибора осуществляется от аккумуляторных батарей 4,5-6,2 В.
  • Время работы без подзарядки аккумулятора 60-90 дней в зависимости от интервала измерений.
  • Прибор снабжен внутренним таймером с минимальным потреблением энергии и только на время измерения одной величины включается питание всего прибора.
  • Каждое 257 измерение, помимо измеряемой величины блуждающего тока или параметров катодной защиты, в память прибора записывается величина напряжения питания прибора.
  • При разряде аккумуляторной батареи до величины 4,4 В прибор автоматически отключается и переходит в режим минимального потребления сохраняя все измеренные величины.
  • Полученные результаты измерения переписываются в ПЭВМ по последовательному каналу — RS-232. Это может быть стационарная ПЭВМ или портативная»Nоtе book», если время разряда аккумуляторов позволяет ему продолжать работу на трассе.

Варианты возможной защиты

Чтобы защитить изделия из металла от пагубного воздействия применяются различные методы, разделяющиеся по природе их применения на пассивные и активные.

Пассивный вариант

Пассивная изоляция

Этот вариант является применением различного изолирующего материала, формирующего защиту между проводником и металлом. В качестве изоляции применяется:

  • эпоксидная смоляные смеси;
  • включение в состав полимеров;
  • покрытие из битума.

Но если ограничиться только этим вариантом, то полноценной защиты не получится, так как изоляционный материал не является стопроцентным барьером из-за наличия диффузионной проницаемости. Поэтому изоляция происходит в частичный способ. Кроме этого в процессе перемещения труб такой слой может быть поврежден, в результате чего возникают значительные царапины, надрезы, сквозные дыры и прочие изъяны.

Важно! Поэтому использовать пассивный метод защиты можно только в качестве дополнения

Активная защита

Указывает на применение активных способ локализации источника воздействия посредством применения катодной поляризации, где отрицательный заряд смещает естественный.

Чтобы подобную защиту реализовать необходимо применение одного из двух инструментов:

  • Гальванического метода – эффект гальванической пары, выполняется разрушение жертвенного анода, обеспечивая тем самым защиту металлоконструкции. Метод активен при сопротивляемости грунта до 50 Ом на метр, если сопротивляемость ниже метод не действенен.
  • Источника постоянного тока – обеспечивает избегание зависимости от силы сопротивляемости грунта. Используется катодная защита, источник которой заключен в сформированном преобразователе, подключенному к электрической цепи переменного тока. Так как источник специально сформирован посредством его регулирования можно задать необходимый уровень защиты тока, в зависимости от сложившихся обстоятельств.

Активная изоляция

Подобный способ может обеспечить и негативное воздействие:

  • перезащита – превышение необходимого потенциала, как результат происходит разрушение металлического изделия;
  • неверный расчет защиты – приводящий к ускоренному коррозийному разрушению близ расположенных металлических объектов.

Приведенные примеры можно рассмотреть на защите такого изделия как полотенцесушитель.

Коррозийные процессы на таких изделиях или прочих оконечных водопроводных изделиях никогда не происходили, но это было реально до начала применения металлопластиковой трубы, где существует контакт с алюминием внутри стенки. В результате формирование блуждающих элементов происходит не только из-за применения пластиковых труб в непосредственном помещении, но и в прочих, так как в многоквартирном доме они могут быть применены у соседа с другого этажа.

Важно! Чтобы избежать негативного влияния образовавшихся токов на собственную конструкцию необходимо выровнять потенциалы, за счет обеспечения полотенцесушителя, батареи и водопроводных труб элементом заземления. При этом использование так необходимого заземления происходит в отношении любой коммуникации, которая выполнена из металлических труб, например, газопровода в земле. При этом использование так необходимого заземления происходит в отношении любой коммуникации, которая выполнена из металлических труб, например, газопровода в земле

При этом использование так необходимого заземления происходит в отношении любой коммуникации, которая выполнена из металлических труб, например, газопровода в земле.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий