Узс led защита (led protection)
Интенсивное развитие светодиодных технологий за последние пять лет привело к их внедрению во все сферы деятельности, которые нуждаются в подсветке. Надёжность и экономичность – вот главное преимущество, которое стало неоспоримым фактом. А если к этим показателям добавить длительный срок службы и безопасность эксплуатации, то становится понятным, почему привычные источники искусственного света постепенно сдают позиции.
Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали… Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали.
Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.
Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:
- скачки напряжения;
- наведённая пульсация;
- паразитарная пульсация.
Скачки напряжения
Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.
Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.
Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.
Наведённая пульсация
Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.
Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни.
Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.
Причины перегорания ламп
Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.
Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, — склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.
В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.
Схема электрическая блока защиты ламп
Так выглядит схема электрическая блока плавного включения ламп, собранная на плате:
Электронная плата блока Ферон PRO11
Основа электронной схемы – PIC-контроллер, в который зашита программа управления силовым элементом – симистором. В разных моделях блока защиты встречаются контроллеры PIC12C508 и PIC12C509. Выбор варианта микросхемы контроллера никак не влияет на характеристики устройства, и видимо зависит только от наличия конкретных микросхем на заводе-изготовителе. Корпус – PDIP, 8 выводов.
Такие же контроллеры, но только в корпусе SOIC-8, применяются в блоках защиты ламп Гранит.
Даташит контроллера можно скачать прямо с блога SamElectric:• PIC12C5XX / 8-Bit CMOS Microcontroller, pdf, 665 kB, скачан: 1829 раз./ Итак главное, ради чего собственно затевалась эта статья – схема блока защиты ламп галогенных ламп Feron:
Схема электрическая блока защиты галогенных ламп Feron
Принцип действия схемы блока защиты вкратце таков. При включении выключателя освещения блок защиты представляет собой разрыв, поскольку симистор закрыт. Соответственно, на выводы блока Х1 и Х2 подается питающее напряжение сети 220 Вольт.
Напряжение питания контроллера – постоянное, около 5 В – подается на выводы питания 1 (VDD) и 8 (VSS). Ограничение питающего напряжения обеспечивается цепью R1 – R2, выпрямление – диодом D1, фильтрация – электролитическим конденсатором С1, стабилизация – стабилитроном D2.
Как только напряжение питания достигает необходимого уровня, контроллер начинает работать с частотой тактовых импульсов, равной 50 Гц. Импульсы (если это можно назвать импульсами, но для работы цифровой схемы нужны именно импульсы) поступают через резистор большого сопротивления из питающей сети.
Контроллер выдает управляющее напряжение на управляющий электрод симистора через резистор R5. Симистор по заданной программе открывается, пропуская ток через цепь лампы, лампа плавно разгорается. Так происходит плавное включение.
В моделях блока защиты галогеновых ламп Ферон применяется совершенно одинаковая электрическая схема. И поскольку блоки отличаются только мощностью, единственное отличие – мощность (максимальный ток) симистора.
Какие симисторы применяются для какой мощности блока:
- BT134 (BT136) 600E – симистор на ток до 4 А, напряжение 600 В – мощность нагрузки 150 Вт;
- BT136 600E – 6 А, блок на 300 Вт
- BT137 600E – 8 А, блок на 500 Вт
- BT138 (BT139) 600E – 12 А (16А), блок на 1000 Вт
Даташиты с параметрами и схемами включения на эти симисторы:• Симисторы для диммеров BT136-BT139 / Даташиты, pdf, , скачан: 13721 раз./
Защита галогенных ламп 220 вольт, плавное включение
С проблемой перегорания ламп накаливания мы все знакомы с детства, когда будучи детьми нам приходилось волей не волей выкручивать лампочки и менять их, чтобы в самом заветном месте в доме появился свет. Времена изменились, большая часть из нас уже использует светодиодные или люминесцентные лампы, но проблема остается актуальной с галогеновыми лампами. Лично я столкнулся с этой проблемой, когда в комнате на потолке сделал 11 светильников под галогеновые лампы накаливания. Цена одной лампы от 20 до 50 рублей, за месяц при редком использовании сгорала минимум 1 лампа, что создавало проблемы, поэтому сразу закупил 10 запасных ламп.
Будучи подкованным в радиоэлектронике, я знал об устройствах плавного включения, которые значительно повышают ресурс ламп накаливания.
За счет плавного включения, на нить накаливания действуют более щадящие режимы, нет импульсо-образных всплесков в момент включения из-за которых сгорает 90% ламп накаливания.
Пришла посылка очень быстро из Белорусии, упаковали хорошо, положили рекламные буклеты ну и самое главное два устройства для 200 ватной нагрузки. Это самые маломощные устройства, а так есть еще для трансформаторных люстр, светодиодов, системы управление и многое другое.
На этом видео я демонстрирую плавность включения галогенных ламп и работу системы дистанционного управления Y-B22, которое скоропостижно сломалось при первом скачке напряжения, а точнее сетевых помехах (искрение на контактах ввода).
Блоки защиты устанавливаются в монтажную электрическую коробку за выключателем, подключение последовательно. Блоки издают несильное жужжание, которое различимо с абсолютной тишине, если блоки будут в коробке в стене, никакого звука вы не услышите. Далее небольшой фотообзор и комментарии
Посылка из Белоруси дошла очень быстро, уже не помню, но не более 2 недель, упаковано хорошо, производитель бонусом наложил много много рккламных буклетов
Картонная коробка от устройства большей мощности на заднем плане, 200 ваттные блоки защиты поставляются вот в таких приятных упаковках с инструкциями и схемами подключения
Слева видим блок управления и пульт ду от устройства Y-B22, которое очень радовало, но сгорело при помехах в сети, позже может попытаюсь отремонтировать
Эту модель выбрал, так как у нее самый привлекательный по дизайну пульт ду, но на деле кнопки западают и качество совсем не то как хотелось бы, хром быстро облезет при частом использовании, типичный китай низкого качества
Так выглядит плата блока защиты Гранит, единственный минус это жжужание при работе, но если вы установите как указано в инструкции блоки в выключателе или коробке в стене, никакого звука вы не услышите, мне пришлось, чтобы не было слышно из под натяжного потолка, залить платы эпоксидной смолой
Так выглядит блок управления Y-B22, справа видим навесную лопольнительную плату, которая как раз отвечает за дистанционное управление, вот она и вышла из строя при помехах в сети
Какие можно сделать выводы: устройство защиты галогенных ламп однозначно стоит покупать (можно и спаять самому), если у вас более 10 ламп, так как иначе вы замучаетесь менять лампочки – это неприятно как с точки зрения удобства, так и с точки зрения финансов (лампы нужно найти и купить, что не всегда легко). С момента установки устройства Гранит не сгорело ни одной лампы!
Осветительные лампы имеют небольшую долговечность, что является проблемой в современном мире. Во время включения питания ламп происходит выход их из строя, что является актуальной проблемой. Нить накаливания в холодном виде образует небольшое сопротивление. Оно слишком уменьшено, чем сопротивление раскаленной нити электротоком. Мы зажигаем свет, то нить лампы в холодном состоянии, и значение тока существенно выше номинала, поэтому она имеет свойство перегорать.
Лампы в светильниках и люстрах перегорают по различным причинам. Если она одна, то это уже лучше. Можно сэкономить на покупке лампочек, если знать основную причину. Кроме экономии у вас не выйдет из строя светильник, или того хуже, не случится пожар в доме.
Существует множество разных вариантов модуля защиты ламп. Некоторые способы защиты ламп разберем на примерах в материалах из жизни.
Серия ОПС1
Ограничительное устройство ОПС1 производится всех трех классов защиты: B, C, и D.
Для чего нужны защитные устройства?
ОПС1 способно защитить любое электрооборудование. Благодаря компактным размерам такое устройство подходит для установки и подключения в обычном электрощите квартиры, коттеджа или офиса. Установка УЗИП в таких помещениях поможет спасти дорогостоящую технику и компьютерное оборудование. В загородных коттеджах, оборудованных системой «умный дом» монтаж ОПС1 предписывается инструкцией производителя, поскольку электронная начинка очень чувствительна к импульсным перенапряжениям. Также подобная защита требуется любым автономным системам жизнеобеспечения, наблюдения и безопасности.
Поэтому такое устройство устанавливается не только в частном секторе и городских квартирах, но и в административных, офисных, коммерческих и других зданиях.
Особенности конструкции и характеристики
ОСП1 имеет стандартные размеры и модульное исполнение: это позволяет без проблем установить устройство на DIN-рейку. При этом прибор может иметь от 1 до 4 сменных модулей (в зависимости от класса). Сменный модуль (отработанный варисторный разрядник) легко заменяется новым: для этого в центре корпуса предусмотрены направляющие, в которые и вставляется новый модуль. Это позволяет быстро произвести замену без отключения проводов и демонтажа всего устройства.
Применяемый в модуле варистор изготавливается из керамической смеси и окиси цинка, с добавлением специальных примесей для получения уникальных запирающих свойств. Также в каждом блоке предусмотрена защита от повышенной токовой нагрузки.
Для контроля работоспособности сменного блока предусмотрено окно с цветным указателем состояния. Для обеспечения надежного контакта на зажимах (клеммах) выполнены насечки, обеспечивающие большую площадь соприкосновения. Это автоматически уменьшает сопротивление самого контакта.
В зависимости от класса защиты и производителя, ограничители перенапряжения имеют такие характеристики:
- Класс защиты – IP;
- Разрядный ток имеет форму 8/20 мкс;
- Номинальное напряжение составляет 230–400 В;
- Время срабатывания составляет не более 25 нс;
- Напряжение защищаемой линии: от 1 до 2 кВ;
- Максимальный разряд, который способно выдержать устройство: 10 – 60 кА.
Чтобы подключить устройство защиты, используются медные или алюминиевые провода сечением от 4 до 25 мм 2
Обратите внимание! При подключении ОПС1 важно соблюдать полярность. Для этого все клеммные зажимы на корпусе прибора имеют маркировку, какой провод следует подключить в этот разъем
Схема подключения
Теперь давайте рассмотрим, что представляет собой схема подключения УЗИП в энергосеть на примере частного дома.
На примере показано, как правильно выполнить подключение ограничителей перенапряжения зонально: такая схема признана наиболее эффективной. Именно концепция трехступенчатой защиты с размещением УЗИП внутри помещения нашла наибольшее применение на практике
При этом важно для каждой зоны устанавливать соответствующий класс ограничителя
Обратите внимание! При монтаже ОСП1 важно выдерживать правильное расстояние между приборами: между ними должно быть минимум 10 метров
Защита дома от грозы
Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.
Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.
Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.
Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.
Сюда входят как силовые цепи так и слаботочка:
интернет
TV
видеонаблюдение
охранная сигнализация
Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.
Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.
Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.
Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.
Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.
Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.
Выбор защитного блока
При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора — мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:
- «Feron» (КНР);
- «Camelion» (КНР);
- «Шепро» (Россия);
- «Гранит 1000», «Гранит 500» (Беларусь);
- «Композит» (Россия);
- «Вжик» (совместное производство России и Китая).
Самые популярные модели выпускаются и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от считаются не слишком качественными. Для них характерны следующие недостатки:
- просадки напряжения, что нарушает работу светильника;
- мигание лампы при подключении и в процессе функционирования;
- регулярные помехи;
- среднее качество пайки;
- экономия на материалах, из которых изготовлен блок.
Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» — более высокую, чем у китайских производителей.
Варианты схем
В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.
При отсутствии клеммников провода спаиваются.
Чаще всего на производствах используется одна из трех схем:
- туристорная;
- симисторная;
- специализированная (обычно микросхема КР1182ПМ1или DIP8).
В сети 220 В
Самая простая схема плавного включения ламп туристорная.
Для самостоятельного изготовления требуются:
- лампа накаливания;
- 4 диода (для создания выпрямительного моста);
- туристор;
- конденсатор (10 мкФ);
- 2 резистора (один из них переменной емкости).
Время включение определяет переменное сопротивление.
В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.
Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет
Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее
Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.
Используется:
- дроссель;
- 2 резистора;
- конденсатор;
- диод;
- симистор.
По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.
Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.
Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.
При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.
Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.
Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.
После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.
При напряжении 12 В
Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.
Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).
Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.
Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.
Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.
Основные неисправности светодиодных ламп на 220 вольт
Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:
Выход из строя светодиодов
Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.
Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.
Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.
Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:
Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.
Выход из строя диодного моста
В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.
Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.
Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.
Плохая пайка выводных концов
В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.
Виды
Рассматриваемые защитные устройства имеют один или два ввода и условно разделяются на следующие типы УЗИП:
- Коммутирующая аппаратура. Отличается высоким сопротивлением, мгновенно падающим до нуля при сильном импульсе. Типичными представителями является разрядник.
- Ограничивающие устройства. К ним относятся ОПН – ограничители сетевого перенапряжения с таким же высоким сопротивлением. В отличие от коммутирующей аппаратуры, сопротивление здесь снижается постепенно. Основой конструкции является варистор, плавно сглаживающий высокие импульсы, а затем возвращающийся в исходное состояние.
- Приборы комбинированного типа соединяют в себе разрядник и варистор, выполняя функции обоих компонентов.
Классификация реле
Защитные реле классифицируются по 2 признакам:
- по способу подключения к сети;
- по количеству подведенных фаз.
По типу подключения
Способы коммутации блоков зависят от конструкции изделия:
- Устройство для защиты бытовой розетки, которое оснащается штепсельными контактами. Изделие представляет собой переходной узел, внутри которого расположены измерительный прибор, контроллер и контактная группа. Детали установлены в пластиковом корпусе, на внешней стороне предусмотрено гнездо для подключения внешних потребителей. В конструкции изделия предусмотрены поворотные регуляторы или кнопки, позволяющие выставить рабочие параметры. Устройства рассчитаны на мощность до 3,5 кВт (сила тока до 16 А).
- Изделие, оборудованное блоком розеток и удлинительным кабелем. Оборудование подключается к бытовой электрической сети, защищаемые приборы получают питание от встроенных распределительных элементов. В конструкции предусмотрен выключатель, имеется цифровой вольтметр и кнопки регулировки параметров. Максимальный ток нагрузки не превышает 10 А (из-за использования удлинительного кабеля), время срабатывания по верхнему пределу 0,02 секунды.
- Отсекатель питания, предназначенный для установки на DIN-рейку, установленную в распределительном квартирном щитке. Изделия отличаются применением измерительного блока с повышенной точностью замера (погрешность составляет 1-2 В). Существуют разновидности оборудования, рассчитанные на силу тока до 63 А (в аварийном кратковременном режиме реле не выходит из строя при подаче 80 А). Устройства оснащаются встроенным термическим реле, предотвращающим возгорание блока при перегреве.
Классификация реле по способу подключения.
По количеству фаз
Существуют реле для бытовой однофазной сети напряжением 220 В и устройства промышленного назначения, адаптированные под трехфазную систему питания напряжением 380 В. Оборудование 2 типа оснащается тройной индикацией напряжения, при обрыве одной фазы происходит автоматическое отключение всех проводников. Блок фиксирует момент перекоса фаз, отключая подачу тока к потребителям. Если в помещении отсутствует нагрузка с трехфазным питанием, то рекомендуется развести магистраль на 3 линии и оснастить каждую однофазным реле.
Полная защита осветительных ламп
Предлагаемый блок защиты ламп служит для продления срока службы ламп накаливания и от преждевременного выхода из строя накаливающей нити при резкой подаче напряжения при эксплуатации ламп. Данный способ особенно подойдет для ламп, расположенных в труднодоступных местах (рекламные щиты, столбы для освещения). Этот прибор хорош и дома, так как в квартире нередко перегорают лампы. Установив это устройство, решается проблема частой замены ламп в связи с выходом их из строя.
Устройство защиты осветительных ламп создает медленный разогрев нити в течение нескольких секунд при включении света. Если напряжение внезапно отключится на короткое время, а затем снова включится, то процесс плавного нагрева нити повторится после вновь поданного напряжения. Происходит стабилизация питания, наибольшее значение его уменьшается до 220 вольт. Блок защиты ламп обладает минимальным временем реагирования на скачки напряжения – несколько миллисекунд. Контроллер управления имеет защиту.
Модуль защиты ламп выдерживает ток импульса 140 ампер, что дает возможность не ставить предохранитель, и быть уверенным в надежности системы и защите ламп.
Схема устройства:
Резистор для подстройки на 300 кОм изображен условно. При применении точных деталей он не нужен. В нашем случае R7 и R8 объединяются в одно сопротивление значением 1,15 мОм. Конкретное значение определяется выходом «Тест». Прибор подключается к сети с точным напряжением 220 вольт переменного тока, и регулировкой резистора ставится логическая единица на выходе «Тест». Для выбора порога стабильного напряжения меньше, чем 220 вольт, эту процедуру проводят при напряжении 215 вольт.
Мощностные характеристики ламп должны иметь границы наибольшим током триака ВТ139-600. Нельзя допустить ток выше 16 ампер. Прибор сочетается с лампами до 3,5 кВт мощности при условии, что триак будет установлен на радиаторе для теплоотвода. Без радиатора можно подсоединять лампы до 300 ватт. Для подключения к прибору ламп нагрузкой более 3500 ватт применяют триак мощнее.
Дроссель для подавления помех в схеме питающей цепи не предусмотрен, так как помехи могут поступать наружу от прибора только тогда, когда разогрев спирали ламп во время пуска за 2,5 секунды превышено напряжение питания сети более 220 вольт. Это незначительно, и триак после разогрева при малом напряжении открывается. Чтобы устройство стоило недорого, это можно не учитывать. Если необходимо полностью сделать защиту от помех радиоволн, то монтируют дроссель большой мощности между нагрузкой и вторым выводом, в этом нет особых проблем.
Контроллер схемы можно заменить другим, подходящим по параметрам. Также поступают и с триаком, подобного типа, подобранным по току нагрузки. Управляющий ток триака не рекомендуется подбирать выше 50 миллиампер. Защита ламп обеспечена.
Блок защиты электросети светодиоды 220В 12кВА срабат-е 5мс (603)
Мин. Цена Цена по максимальной скидке 10%. Предоставляется при накоплении суммы покупки за все время в 20 000 рублей —>
Блок защиты электросети 220В 1500ВА время 10мс IP56 (607)
Блок защиты электросети 220В 1500ВА время 10мс IP56 (607)
Это также называют: ифыешщт
Всегда поможем: Центр поддержки и продаж
Скидки до 10% + баллы до 10%
Доставка по городу от 150 р.
Получение в 150 пунктах выдачи
- Покупателям Способ оплаты
- Доставка
- Акции
- Скидки и баллы
- Адреса магазинов
- Договор оферты
- Компания ЭТМ О компании
- Сервис iPRO
- Электрофорум
- ЭТМ Вакансии
Центр поддержки и продаж
- Электрика
- Свет
- Крепеж
- Безопасность
- Повышение квалификации
- Часто задаваемые вопросы
- Нашли ошибку?
- Центр обращений
2021 Компания ЭТМ — Копирование и использование в коммерческих целях информации на сайте www.etm.ru допускается только с письменного одобрения Компании ЭТМ. Информация о товарах, их характеристиках и комплектации может содержать неточности
Ваш город: Выберите город
Я подтверждаю свое согласие на обработку персональных данных согласно Политике обработки персональных данных
Выбор защитного блока
При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора — мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:
- «Feron» (КНР);
- «Camelion» (КНР);
- «Шепро» (Россия);
- «Гранит 1000», «Гранит 500» (Беларусь);
- «Композит» (Россия);
- «Вжик» (совместное производство России и Китая).
Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:
- просадки напряжения, что нарушает работу светильника;
- мигание лампы при подключении и в процессе функционирования;
- регулярные помехи;
- среднее качество пайки;
- экономия на материалах, из которых изготовлен блок.
Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» — более высокую, чем у китайских производителей.
Для чего применяют импульсные реле?
С помощью данных приборов легко организовать включение осветительных приборов из нескольких мест, например, подойдут для этих целей:
- длинные коридоры;
- лестницы многоэтажных зданий;
- подъезды домов.
Можно установить реле где угодно без ограничений по количеству. Соединяются выключатели света параллельно друг другу с помощью тонких 2-х жильных проводов. Вся схема подключается к входному контакту блока управления импульсного реле.
Благодаря внедрению данной системы больше нет необходимости:
- путаться в коммутационных схемах;
- заморачиваться с выключателями проходного типа;
- мучиться с подключением переключателей;
- прокладывать 3 – 4-х жильные кабели.
Не нужны действия, имевшие место в классической схеме управления осветительными приборами из нескольких мест.
Вечная лампа накаливания
Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.
В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226. Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки. Схема подключения лампы через диод простая, но создает хорошую защиту.
Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.
В трубочку вставляем проволочку и запаиваем. Получается так:
Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:
Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.
Вечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет
Для подъезда или подвала мерцание не играет важной роли
Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.
Можно использовать такую схему подключения лампы накаливания:
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.